| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At present, libm tests for each function get built into a single
executable (for each floating point type, for each of normal / inline
/ finite-math-only functions, plus vector variants) and run together,
resulting in a single PASS or FAIL (for each of those nine variants
plus vector variants). Building this executable involves reading
over 50 MB of libm-test-*.c sources.
This patch arranges for tests of each function to be run separately
from the makefiles instead. There are 121 functions being tested for
each (type, variant pair) (actually 126, but run as 121 from the
Makefile because each of the pairs (exp10, pow10), (isfinite, finite),
(lgamma, gamma), (remainder, drem), (scalbn, ldexp), shares a table of
test results and so is run together), so 1089 separate tests run from
the Makefile, plus 48 vector tests on x86_64 (six functions for eight
vector variants). Each test only involves a libm-test-<func>.c file
of no more than about 4 MB, rather than all such files taking about 50
MB. With tests run separately, test summaries will indicate which
functions actually have problems (of course, those problems may just
be out-of-date libm-test-ulps files if the file hasn't been updated
for the architecture in question recently).
All the .c files for the 1089+48 tests are generated automatically
from the Makefiles. Various checked-in boilerplate .c files are
removed as no longer needed. CFLAGS definitions for the different
kinds of tests are generated using makefile iterators to apply
target-specific variable settings. libm-have-vector-test.h is no
longer needed; the list of functions to test for each vector type is
now in the sysdeps Makefile.
This should reduce the amount of boilerplate needed for float128
testing support; test-float128.h will still be needed, but not various
.c files or Makefile CFLAGS definitions. The logic for creating
dependencies on libm-test-support-*.o files should also render
<https://sourceware.org/ml/libc-alpha/2017-02/msg00279.html>
unnecessary.
Tested for x86_64 and x86.
* math/Makefile (libm-tests-generated): Remove variable.
(libm-tests-base-normal): New variable.
(libm-tests-base-finite): Likewise.
(libm-tests-base-inline): Likewise.
(libm-tests-base): Likewise.
(libm-tests-normal): Likewise.
(libm-tests-finite): Likewise.
(libm-tests-inline): Likewise.
(libm-tests-vector): Likewise.
(libm-tests): Define in terms of these new variables.
(libm-tests-for-type): New variable.
(libm-tests.o): Move definition.
(tests): Move addition of $(libm-tests).
(generated): Update for new and removed libm test files.
($(objpfx)libm-test.c): Remove target.
($(objpfx)libm-have-vector-test.h): Likewise.
(CFLAGS-test-double-vlen2.c): Remove variable.
(CFLAGS-test-double-vlen4.c): Likewise.
(CFLAGS-test-double-vlen8.c): Likewise.
(CFLAGS-test-float-vlen4.c): Likewise.
(CFLAGS-test-float-vlen8.c): Likewise.
(CFLAGS-test-float-vlen16.c): Likewise.
(CFLAGS-test-float.c): Likewise.
(CFLAGS-test-float-finite.c): Likewise.
(CFLAGS-libm-test-support-float.c): Likewise.
(CFLAGS-test-double.c): Likewise.
(CFLAGS-test-double-finite.c): Likewise.
(CFLAGS-libm-test-support-double.c): Likewise.
(CFLAGS-test-ldouble.c): Likewise.
(CFLAGS-test-ldouble-finite.c): Likewise.
(CFLAGS-libm-test-support-ldouble.c): Likewise.
(libm-test-inline-cflags): New variable.
(CFLAGS-test-ifloat.c): Remove variable.
(CFLAGS-test-idouble.c): Likewise.
(CFLAGS-test-ildouble.c): Likewise.
($(addprefix $(objpfx), $(libm-tests.o))): Move target and update
dependencies.
($(foreach t,$(libm-tests-normal),$(objpfx)$(t).c)): New rule.
($(foreach t,$(libm-tests-finite),$(objpfx)$(t).c)): Likewise.
($(foreach t,$(libm-tests-inline),$(objpfx)$(t).c)): Likewise.
($(foreach t,$(libm-tests-vector),$(objpfx)$(t).c)): Likewise.
($(foreach t,$(types),$(objpfx)libm-test-support-$(t).c)):
Likewise.
(dependencies on libm-test-support-*.o): Remove.
($(foreach f,$(libm-test-funcs-all),$(objpfx)$(o)-$(f).o)): New
rules using iterators.
($(addprefix $(objpfx),$(call libm-tests-for-type,$(o)))):
Likewise.
($(objpfx)libm-test-support-$(o).o): Likewise.
($(addprefix $(objpfx),$(filter-out $(tests-static)
$(libm-vec-tests),$(tests)))): Filter out $(libm-tests-vector)
instead.
($(addprefix $(objpfx), $(libm-vec-tests))): Use iterator to
define rule instead.
* math/README.libm-test: Update.
* math/libm-test-acos.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-acosh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-asin.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-asinh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-atan.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-atan2.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-atanh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cabs.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cacos.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cacosh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-canonicalize.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-carg.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-casin.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-casinh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-catan.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-catanh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cbrt.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ccos.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ccosh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ceil.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cexp.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cimag.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-clog.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-clog10.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-conj.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-copysign.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cos.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cosh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cpow.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-cproj.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-creal.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-csin.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-csinh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-csqrt.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ctan.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ctanh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-erf.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-erfc.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-exp.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-exp10.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-exp2.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-expm1.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fabs.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fdim.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-floor.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fma.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fmax.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fmaxmag.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fmin.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fminmag.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fmod.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fpclassify.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-frexp.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fromfp.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-fromfpx.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-getpayload.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-hypot.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ilogb.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-iscanonical.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-iseqsig.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isfinite.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isgreater.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isgreaterequal.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isinf.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isless.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-islessequal.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-islessgreater.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isnan.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isnormal.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-issignaling.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-issubnormal.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-isunordered.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-iszero.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-j0.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-j1.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-jn.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-lgamma.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-llogb.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-llrint.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-llround.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-log.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-log10.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-log1p.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-log2.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-logb.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-lrint.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-lround.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-modf.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-nearbyint.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-nextafter.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-nextdown.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-nexttoward.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-nextup.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-pow.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-remainder.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-remquo.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-rint.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-round.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-roundeven.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-scalb.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-scalbln.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-scalbn.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-setpayload.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-setpayloadsig.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-signbit.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-significand.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-sin.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-sincos.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-sinh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-sqrt.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-tan.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-tanh.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-tgamma.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-totalorder.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-totalordermag.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-trunc.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ufromfp.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-ufromfpx.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-y0.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-y1.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-yn.inc: Include libm-test-driver.c.
(do_test): New function.
* math/libm-test-driver.c: Do not include libm-have-vector-test.h.
(HAVE_VECTOR): Remove macro.
(START): Do not call HAVE_VECTOR.
* math/test-double-vlen2.h (FUNC_TEST): Remove macro.
* math/test-double-vlen4.h (FUNC_TEST): Remove macro.
* math/test-double-vlen8.h (FUNC_TEST): Remove macro.
* math/test-float-vlen16.h (FUNC_TEST): Remove macro.
* math/test-float-vlen4.h (FUNC_TEST): Remove macro.
* math/test-float-vlen8.h (FUNC_TEST): Remove macro.
* math/test-math-vector.h (FUNC_TEST): New macro.
(WRAPPER_DECL): Rename to WRAPPER_DECL_f.
* sysdeps/x86_64/fpu/Makefile (double-vlen2-funcs): New variable.
(double-vlen4-funcs): Likewise.
(double-vlen4-avx2-funcs): Likewise.
(double-vlen8-funcs): Likewise.
(float-vlen4-funcs): Likewise.
(float-vlen8-funcs): Likewise.
(float-vlen8-avx2-funcs): Likewise.
(float-vlen16-funcs): Likewise.
(CFLAGS-test-double-vlen4-avx2.c): Remove variable.
(CFLAGS-test-float-vlen8-avx2.c): Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.h (TEST_VECTOR_cos): Remove
macro.
(TEST_VECTOR_sin): Likewise.
(TEST_VECTOR_sincos): Likewise.
(TEST_VECTOR_log): Likewise.
(TEST_VECTOR_exp): Likewise.
(TEST_VECTOR_pow): Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.h (TEST_VECTOR_cos):
Likewise.
(TEST_VECTOR_sin): Likewise.
(TEST_VECTOR_sincos): Likewise.
(TEST_VECTOR_log): Likewise.
(TEST_VECTOR_exp): Likewise.
(TEST_VECTOR_pow): Likewise.
* sysdeps/x86_64/fpu/test-float-vlen16.h (TEST_VECTOR_cosf):
Likewise.
(TEST_VECTOR_sinf): Likewise.
(TEST_VECTOR_sincosf): Likewise.
(TEST_VECTOR_logf): Likewise.
(TEST_VECTOR_expf): Likewise.
(TEST_VECTOR_powf): Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8.h (TEST_VECTOR_cosf):
Likewise.
(TEST_VECTOR_sinf): Likewise.
(TEST_VECTOR_sincosf): Likewise.
(TEST_VECTOR_logf): Likewise.
(TEST_VECTOR_expf): Likewise.
(TEST_VECTOR_powf): Likewise.
* math/gen-libm-have-vector-test.sh: Remove file.
* math/libm-test.inc: Likewise.
* math/libm-test-support-double.c: Likewise.
* math/libm-test-support-float.c: Likewise.
* math/libm-test-support-ldouble.c: Likewise.
* math/test-double-finite.c: Likewise.: Likewise.
* math/test-double.c: Likewise.
* math/test-float-finite.c: Likewise.
* math/test-float.c: Likewise.
* math/test-idouble.c: Likewise.
* math/test-ifloat.c: Likewise.
* math/test-ildouble.c: Likewise.
* math/test-ldouble-finite.c: Likewise.
* math/test-ldouble.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen2.h: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen16.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen4.h: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8.c: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves tests of catan and catanh with finite inputs (other
than the divide-by-zero cases producing an exact infinity) to using
the auto-libm-test machinery. Each of auto-libm-test-out-catan and
auto-libm-test-out-catanh takes about three seconds to generate on my
system (so in fact it wasn't necessary after all to defer the move to
auto-libm-test-* until the output files were split up by function).
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add tests of catan and catanh.
* math/auto-libm-test-out-catan: New generated file.
* math/auto-libm-test-out-catanh: Likewise.
* math/libm-test-catan.inc (catan_test_data): Use AUTO_TESTS_c_c.
Move tests with finite inputs, except divide-by-zero cases, to
auto-libm-test-in.
* math/libm-test-catanh.inc (catanh_test_data): Likewise.
* math/Makefile (libm-test-funcs-auto): Add catan and catanh.
(libm-test-funcs-noauto): Remove catan and catanh.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves tests of casin and casinh with finite inputs to using
the auto-libm-test machinery. Each of auto-libm-test-out-casin and
auto-libm-test-out-casinh takes about 38 minutes to generate on my
system because of MPC slowness on special cases that appear in the
tests (with MPC 1.0.3; I don't know to what extent current MPC master
might speed it up).
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add tests of casin and casinh.
* math/auto-libm-test-out-casin: New generated file.
* math/auto-libm-test-out-casinh: Likewise.
* math/libm-test-casin.inc (casin_test_data): Use AUTO_TESTS_c_c.
Move tests with finite inputs to auto-libm-test-in.
* math/libm-test-casinh.inc (casinh_test_data): Likewise.
* math/Makefile (libm-test-funcs-auto): Add casin and casinh.
(libm-test-funcs-noauto): Remove casin and casinh.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves tests of cacos and cacosh with finite inputs to using
the auto-libm-test machinery. Each of auto-libm-test-out-cacos and
auto-libm-test-out-cacosh takes about 80 minutes to generate on my
system because of MPC slowness on special cases that appear in the
tests (with MPC 1.0.3; I don't know to what extent current MPC master
might speed it up).
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add tests of cacos and cacosh.
* math/auto-libm-test-out-cacos: New generated file.
* math/auto-libm-test-out-cacosh: Likewise.
* math/libm-test-cacos.inc (cacos_test_data): Use AUTO_TESTS_c_c.
Move tests with finite inputs to auto-libm-test-in.
* math/libm-test-cacosh.inc (cacosh_test_data): Likewise.
* math/Makefile (libm-test-funcs-auto): Add cacos and cacosh.
(libm-test-funcs-noauto): Remove cacos and cacosh.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
|
|
|
|
|
|
|
|
| |
Revert:
2017-02-16 Zack Weinberg <zackw@panix.com>
* sysdeps/x86_64/fpu/math-tests-arch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/multiarch/test-multiarch.h: Include cpu-features.h.
Don't include init-arch.h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* crypt/md5.h: Test _LIBC with #if defined, not #if.
* dirent/opendir-tst1.c: Include sys/stat.h.
* dirent/tst-fdopendir.c: Include sys/stat.h.
* dirent/tst-fdopendir2.c: Include stdlib.h.
* dirent/tst-scandir.c: Include stdbool.h.
* elf/tst-auditmod1.c: Include link.h and stddef.h.
* elf/tst-tls15.c: Include stdlib.h.
* elf/tst-tls16.c: Include stdlib.h.
* elf/tst-tls17.c: Include stdlib.h.
* elf/tst-tls18.c: Include stdlib.h.
* iconv/tst-iconv6.c: Include endian.h.
* iconvdata/bug-iconv11.c: Include limits.h.
* io/test-utime.c: Include stdint.h.
* io/tst-faccessat.c: Include sys/stat.h.
* io/tst-fchmodat.c: Include sys/stat.h.
* io/tst-fchownat.c: Include sys/stat.h.
* io/tst-fstatat.c: Include sys/stat.h.
* io/tst-futimesat.c: Include sys/stat.h.
* io/tst-linkat.c: Include sys/stat.h.
* io/tst-mkdirat.c: Include sys/stat.h and stdbool.h.
* io/tst-mkfifoat.c: Include sys/stat.h and stdbool.h.
* io/tst-mknodat.c: Include sys/stat.h and stdbool.h.
* io/tst-openat.c: Include stdbool.h.
* io/tst-readlinkat.c: Include sys/stat.h.
* io/tst-renameat.c: Include sys/stat.h.
* io/tst-symlinkat.c: Include sys/stat.h.
* io/tst-unlinkat.c: Include stdbool.h.
* libio/bug-memstream1.c: Include stdlib.h.
* libio/bug-wmemstream1.c: Include stdlib.h.
* libio/tst-fwrite-error.c: Include stdlib.h.
* libio/tst-memstream1.c: Include stdlib.h.
* libio/tst-memstream2.c: Include stdlib.h.
* libio/tst-memstream3.c: Include stdlib.h.
* malloc/tst-interpose-aux.c: Include stdint.h.
* misc/tst-preadvwritev-common.c: Include sys/stat.h.
* nptl/tst-basic7.c: Include limits.h.
* nptl/tst-cancel25.c: Include pthread.h, not pthreadP.h.
* nptl/tst-cancel4.c: Include stddef.h, limits.h, and sys/stat.h.
* nptl/tst-cancel4_1.c: Include stddef.h.
* nptl/tst-cancel4_2.c: Include stddef.h.
* nptl/tst-cond16.c: Include limits.h.
Use sysconf(_SC_PAGESIZE) instead of __getpagesize.
* nptl/tst-cond18.c: Include limits.h.
Use sysconf(_SC_PAGESIZE) instead of __getpagesize.
* nptl/tst-cond4.c: Include stdint.h.
* nptl/tst-cond6.c: Include stdint.h.
* nptl/tst-stack2.c: Include limits.h.
* nptl/tst-stackguard1.c: Include stddef.h.
* nptl/tst-tls4.c: Include stdint.h. Don't include tls.h.
* nptl/tst-tls4moda.c: Include stddef.h.
Don't include stdio.h, unistd.h, or tls.h.
* nptl/tst-tls4modb.c: Include stddef.h.
Don't include stdio.h, unistd.h, or tls.h.
* nptl/tst-tls5.h: Include stddef.h. Don't include stdlib.h or tls.h.
* posix/tst-getaddrinfo2.c: Include stdio.h.
* posix/tst-getaddrinfo5.c: Include stdio.h.
* posix/tst-pathconf.c: Include sys/stat.h.
* posix/tst-posix_fadvise-common.c: Include stdint.h.
* posix/tst-preadwrite-common.c: Include sys/stat.h.
* posix/tst-regex.c: Include stdint.h.
Don't include spawn.h or spawn_int.h.
* posix/tst-regexloc.c: Don't include spawn.h or spawn_int.h.
* posix/tst-vfork3.c: Include sys/stat.h.
* resolv/tst-bug18665-tcp.c: Include stdlib.h.
* resolv/tst-res_hconf_reorder.c: Include stdlib.h.
* resolv/tst-resolv-search.c: Include stdlib.h.
* stdio-common/tst-fmemopen2.c: Include stdint.h.
* stdio-common/tst-vfprintf-width-prec.c: Include stdlib.h.
* stdlib/test-canon.c: Include sys/stat.h.
* stdlib/tst-tls-atexit.c: Include stdbool.h.
* string/test-memchr.c: Include stdint.h.
* string/tst-cmp.c: Include stdint.h.
* sysdeps/pthread/tst-timer.c: Include stdint.h.
* sysdeps/unix/sysv/linux/tst-sync_file_range.c: Include stdint.h.
* sysdeps/wordsize-64/tst-writev.c: Include limits.h and stdint.h.
* sysdeps/x86_64/fpu/math-tests-arch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/multiarch/test-multiarch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/tst-auditmod10b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod3b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod4b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod5b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod6b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod6c.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod7b.c: Include link.h and stddef.h.
* time/clocktest.c: Include stdint.h.
* time/tst-posixtz.c: Include stdint.h.
* timezone/tst-timezone.c: Include stdint.h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The libmvec tests put substantive, architecture-specific contents in
.c files such as test-double-vlen4.c, so making those files
architecture-specific and causing issues for generating such files
automatically when splitting up tests by function.
This patch moves all the substantive contents to .h files, so the .c
files only include the .h file and then libm-test.c. This allows for
automatic generation of per-function .c files in future. The .h files
in turn #include or #include_next the architecture-independent file
and add the architecture-specific definitions to that. (Splitting by
function should in fact allow the TEST_VECTOR_* macros to be replaced
by sysdeps makefile information on which functions to test in each
case, removing the need for gen-libm-have-vector-test.sh as well as
removing the need for some of the architecture-specific headers.)
Tested for x86_64.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-double-vlen2.h: ... here. New file.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Move most contents
to, and include ...
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.h: ... here. New
file.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-double-vlen4.h: ... here. New file.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-double-vlen8.h: ... here. New file.
* sysdeps/x86_64/fpu/test-float-vlen16.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-float-vlen16.h: ... here. New file.
* sysdeps/x86_64/fpu/test-float-vlen4.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-float-vlen4.h: ... here. New file.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2.c: Move most contents
to, and include ...
* sysdeps/x86_64/fpu/test-float-vlen8-avx2.h: ... here. New file.
* sysdeps/x86_64/fpu/test-float-vlen8.c: Move most contents to,
and include ...
* sysdeps/x86_64/fpu/test-float-vlen8.h: ... here. New file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On x86-64, _dl_runtime_resolve must preserve the first 8 vector
registers. Add 3 _dl_runtime_resolve tests to verify that SSE,
AVX and AVX512 registers are preserved.
* sysdeps/x86_64/Makefile (tests): Add tst-sse, tst-avx and
tst-avx512.
(test-extras): Add tst-avx-aux and tst-avx512-aux.
(extra-test-objs): Add tst-avx-aux.o and tst-avx512-aux.o.
(modules-names): Add tst-ssemod, tst-avxmod and tst-avx512mod.
($(objpfx)tst-sse): New rule.
($(objpfx)tst-avx): Likewise.
($(objpfx)tst-avx512): Likewise.
(CFLAGS-tst-avx-aux.c): New.
(CFLAGS-tst-avxmod.c): Likewise.
(CFLAGS-tst-avx512-aux.c): Likewise.
(CFLAGS-tst-avx512mod.c): Likewise.
* sysdeps/x86_64/tst-avx-aux.c: New file.
* sysdeps/x86_64/tst-avx.c: Likewise.
* sysdeps/x86_64/tst-avx512-aux.c: Likewise.
* sysdeps/x86_64/tst-avx512.c: Likewise.
* sysdeps/x86_64/tst-avx512mod.c: Likewise.
* sysdeps/x86_64/tst-avxmod.c: Likewise.
* sysdeps/x86_64/tst-sse.c: Likewise.
* sysdeps/x86_64/tst-ssemod.c: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on comments on previous attempt to address BZ#16640 [1],
the idea is not support invalid use of strtok (the original
bug report proposal). This leader to a new strtok optimized
strtok implementation [2].
The idea of this patch is to fix BZ#16640 to align all the
implementations to a same contract. However, with newer strtok
code it is better to get remove the old assembly ones instead of
fix them.
For x86 is a gain in all cases since the new implementation can
potentially use sse2/sse42 implementation for strspn and strcspn.
This shows a better performance on both i686 and x86_64 using
the string benchtests.
On powerpc64 the gains are mixed, where only for larger inputs
or keys some gains are showns (based on benchtest it seems that
it shows some gains for keys larger than 10 and inputs larger
than 32). I would prefer to remove the optimized implementation
based on first code simplicity and second because some more gain
could be optimized using a better optimized strcspn/strspn
code (as for x86). However if powerpc arch maintainers prefer I
can send a v2 with the assembly code adjusted instead.
Checked on x86_64-linux-gnu, i686-linux-gnu, and powerpc64le-linux-gnu.
[BZ #16640]
* sysdeps/i386/i686/strtok.S: Remove file.
* sysdeps/i386/i686/strtok_r.S: Likewise.
* sysdeps/i386/strtok.S: Likewise.
* sysdeps/i386/strtok_r.S: Likewise.
* sysdeps/powerpc/powerpc64/strtok.S: Likewise.
* sysdeps/powerpc/powerpc64/strtok_r.S: Likewise.
* sysdeps/x86_64/strtok.S: Likewise.
* sysdeps/x86_64/strtok_r.S: Likewise.
[1] https://sourceware.org/ml/libc-alpha/2016-10/msg00411.html
[2] https://sourceware.org/ml/libc-alpha/2016-12/msg00461.html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IFUNC relocation against definition in unrelocated shared library
will lead to segfault when the IFUNC function is called. This
patch allows such IFUNC relocations with a warning. This isn't
a real fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21041
It simply allows the program to load. The program will segfault
when longjmp is called.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Replace
_dl_fatal_printf with _dl_error_printf for IFUNC relocation
against unrelocated shared library.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since memset-vec-unaligned-erms.S has VDUP_TO_VEC0_AND_SET_RETURN at
function entry, memset optimized for AVX2 and AVX512 will always use
ymm/zmm register. VZEROUPPER should be placed before ret in
L(stosb):
movq %rdx, %rcx
movzbl %sil, %eax
movq %rdi, %rdx
rep stosb
movq %rdx, %rax
ret
since it can be reached from
L(stosb_more_2x_vec):
cmpq $REP_STOSB_THRESHOLD, %rdx
ja L(stosb)
[BZ #21081]
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(L(stosb)): Add VZEROUPPER before ret.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to BZ#19387, BZ#21014, and BZ#20971, both x86 sse2 strncat
optimized assembly implementations do not handle the size overflow
correctly.
The x86_64 one is in fact an issue with strcpy-sse2-unaligned, but
that is triggered also with strncat optimized implementation.
This patch uses a similar strategy used on 3daef2c8ee4df2, where
saturared math is used for overflow case.
Checked on x86_64-linux-gnu and i686-linux-gnu. It fixes BZ #19390.
[BZ #19390]
* string/test-strncat.c (test_main): Add tests with SIZE_MAX as
maximum string size.
* sysdeps/i386/i686/multiarch/strcat-sse2.S (STRCAT): Avoid overflow
in pointer addition.
* sysdeps/x86_64/multiarch/strcpy-sse2-unaligned.S (STRCPY):
Likewise.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current optimized memchr for x86_64 does for input arguments pointers
module 64 in range of [49,63] if there is no searchr char in the rest
of 64-byte block a pointer addition which might overflow:
* sysdeps/x86_64/memchr.S
77 .p2align 4
78 L(unaligned_no_match):
79 add %rcx, %rdx
Add (uintptr_t)s % 16 to n in %rdx.
80 sub $16, %rdx
81 jbe L(return_null)
This patch fixes by adding a saturated math that sets a maximum pointer
value if it overflows (UINTPTR_MAX).
Checked on x86_64-linux-gnu and powerpc64-linux-gnu.
[BZ# 19387]
* sysdeps/x86_64/memchr.S (memchr): Avoid overflow in pointer
addition.
* string/test-memchr.c (do_test): Remove alignment limitation.
(test_main): Add test that trigger BZ# 19387.
|
|
|
|
|
|
|
|
|
|
|
| |
When dynamically linking, ifunc resolvers are called before TLS is
initialized, so they cannot be safely stack-protected.
We avoid disabling stack-protection on large numbers of files by
using __attribute__ ((__optimize__ ("-fno-stack-protector")))
to turn it off just for the resolvers themselves. (We provide
the attribute even when statically linking, because we will later
use it elsewhere too.)
|
|
|
|
|
|
| |
With stack protection enabled, these files have external symbol
references for the first time, so the fact that they are not compiled
with -fPIE and are then linked into a -pie binary starts to hurt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various fmax and fmin function implementations mishandle sNaN
arguments:
(a) When both arguments are NaNs, the return value should be a qNaN,
but sometimes it is an sNaN if at least one argument is an sNaN.
(b) Under TS 18661-1 semantics, if either argument is an sNaN then the
result should be a qNaN (whereas if one argument is a qNaN and the
other is not a NaN, the result should be the non-NaN argument).
Various implementations treat sNaNs like qNaNs here.
This patch fixes the x86 and x86_64 versions (ignoring float and
double for 32-bit x86 given the inability to reliably avoid the sNaN
turning into a qNaN before it gets to the called function). Tests of
sNaN inputs to these functions are added.
Note on architecture versions I haven't changed for this issue:
AArch64 already gets this right (it uses a hardware instruction with
the correct semantics for both quiet and signaling NaNs) and does not
need changes. It's possible Alpha, IA64, SPARC might need changes
(this would be shown by the testsuite if so).
Tested for x86_64 and x86 (both i686 and i586 builds, to cover the
different x86 implementations).
[BZ #20947]
* sysdeps/i386/fpu/s_fmaxl.S (__fmaxl): Add the arguments when
either is a signaling NaN.
* sysdeps/i386/fpu/s_fminl.S (__fminl): Likewise. Make code
follow fmaxl more closely.
* sysdeps/i386/i686/fpu/s_fmaxl.S (__fmaxl): Add the arguments
when either is a signaling NaN.
* sysdeps/i386/i686/fpu/s_fminl.S (__fminl): Likewise.
* sysdeps/x86_64/fpu/s_fmax.S (__fmax): Likewise.
* sysdeps/x86_64/fpu/s_fmaxf.S (__fmaxf): Likewise.
* sysdeps/x86_64/fpu/s_fmaxl.S (__fmaxl): Likewise.
* sysdeps/x86_64/fpu/s_fmin.S (__fmin): Likewise.
* sysdeps/x86_64/fpu/s_fminf.S (__fminf): Likewise.
* sysdeps/x86_64/fpu/s_fminl.S (__fminl): Likewise.
* math/libm-test.inc (fmax_test_data): Add tests of sNaN inputs.
(fmin_test_data): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The x86_64/x86 powl implementations mishandle sNaN arguments, both by
returning sNaN in some cases (instead of doing arithmetic on the
arguments to produce the result when NaN arguments result in NaN
results) and by treating sNaN the same as qNaN for arguments (1, sNaN)
and (sNaN, 0), contrary to TS 18661-1 which requires those cases to
return qNaN instead of 1.
This patch makes the x86_64/x86 powl implementations follow TS 18661-1
semantics for sNaN arguments; sNaN tests are also added for pow.
Given the problems with testing float and double sNaN arguments on
32-bit x86 (sNaN tests disabled because the compiler may convert
unnecessarily to a qNaN when passing arguments), no changes are made
to the powf and pow implementations there.
Tested for x86_64 and x86.
[BZ #20916]
* sysdeps/i386/fpu/e_powl.S (__ieee754_powl): Do not return 1 for
arguments (sNaN, 0) or (1, sNaN). Do arithmetic on NaN arguments
to compute result.
* sysdeps/x86_64/fpu/e_powl.S (__ieee754_powl): Likewise.
* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
|
|
|
|
|
|
|
| |
It is no longer needed since commit 6c444ad6e953dbdf9c7be065308a0a777
(elf: Do not use memalign for TCB/TLS blocks allocation [BZ #17730]).
Applications do not link against ld.so and will use the definition in
libc.so, so there is no ABI impact.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change moves the main implementation of _dl_catch_error,
_dl_signal_error to libc.so, where TLS variables can be used
directly. This removes a writable function pointer from the
rtld_global variable.
For use during initial relocation, minimal implementations of these
functions are provided in ld.so. These are eventually interposed
by the libc.so implementations. This is implemented by compiling
elf/dl-error-skeleton.c twice, via elf/dl-error.c and
elf/dl-error-minimal.c.
As a side effect of this change, the static version of dl-error.c
no longer includes support for the
_dl_signal_cerror/_dl_receive_error mechanism because it is only
used in ld.so.
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need to use PLT nor GOT in static archives to branch to a
function, regardless whether static archives is compiled with PIC or
not. When static archives are used to create dynamic executable,
PLT/GOT may be used. The resulting executable still works correctly.
[BZ #20750]
* sysdeps/x86_64/sysdep.h (JUMPTARGET): Check SHARED instead
of PIC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
|
|
|
|
|
|
|
|
|
|
|
| |
When glibc is compiled with gcc 6.2 that has been configured with
to default to PIC/PIE, the static version of __memcpy_chk is not built,
as the test is done on PIC instead of SHARED. Fix the test to check for
SHARED, like it is done for similar functions like memmove_chk.
Changelog:
* sysdeps/x86_64/memcpy_chk.S (__memcpy_chk): Check for SHARED
instead of PIC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
manual/libm-err-tab.pl hardcodes a list of names for particular
platforms (mapping from sysdeps directory name to friendly name for
the manual). This goes against the principle of keeping information
about individual platforms in their corresponding sysdeps directory,
and the list is also very out-of-date regarding supported platforms
and their corresponding sysdeps directories.
This patch fixes this by adding a libm-test-ulps-name file alongside
each libm-test-ulps file. The script then gets the friendly name from
that file, which is required to exist, so it no longer needs to allow
for the mapping being missing.
Tested for x86_64.
[BZ #14139]
* manual/libm-err-tab.pl (%pplatforms): Initialize to empty.
(find_files): Obtain platform name from libm-test-ulps-name and
store in %pplatforms.
(canonicalize_platform): Remove.
(print_platforms): Use $pplatforms directly.
(by_platforms): Do not allow for platforms missing from
%pplatforms.
* sysdeps/aarch64/libm-test-ulps-name: New file.
* sysdeps/alpha/fpu/libm-test-ulps-name: Likewise.
* sysdeps/arm/libm-test-ulps-name: Likewise.
* sysdeps/generic/libm-test-ulps-name: Likewise.
* sysdeps/hppa/fpu/libm-test-ulps-name: Likewise.
* sysdeps/i386/fpu/libm-test-ulps-name: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps-name: Likewise.
* sysdeps/ia64/fpu/libm-test-ulps-name: Likewise.
* sysdeps/m68k/coldfire/fpu/libm-test-ulps-name: Likewise.
* sysdeps/m68k/m680x0/fpu/libm-test-ulps-name: Likewise.
* sysdeps/microblaze/libm-test-ulps-name: Likewise.
* sysdeps/mips/mips32/libm-test-ulps-name: Likewise.
* sysdeps/mips/mips64/libm-test-ulps-name: Likewise.
* sysdeps/nios2/libm-test-ulps-name: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps-name: Likewise.
* sysdeps/powerpc/nofpu/libm-test-ulps-name: Likewise.
* sysdeps/s390/fpu/libm-test-ulps-name: Likewise.
* sysdeps/sh/libm-test-ulps-name: Likewise.
* sysdeps/sparc/fpu/libm-test-ulps-name: Likewise.
* sysdeps/tile/libm-test-ulps-name: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps-name: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Calling an IFUNC function defined in unrelocated shared library may
lead to segfault. This patch issues an error message to request
relinking the shared library if it references IFUNC function defined
in the unrelocated shared library.
[BZ #20019]
* sysdeps/i386/dl-machine.h (elf_machine_rel): Check IFUNC
definition in unrelocated shared library.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sysdeps/ieee754/dbl-64/dla.h can use a macro DLA_FMS for more
efficient double-width operations when fused multiply-subtract is
supported. However, this macro is only defined for x86_64,
conditional on architecture-specific __FMA4__. This patch makes the
code use __builtin_fma conditional on __FP_FAST_FMA, as used elsewhere
in glibc.
Tested for x86_64, x86 and powerpc. On powerpc (where this is causing
fused operations to be used where they weren't previously) I see an
increase from 1ulp to 2ulp in the imaginary part of clog10:
testing double (without inline functions)
Failure: Test: Imaginary part of: clog10 (0x1.7a858p+0 - 0x6.d940dp-4 i)
Result:
is: -1.2237865208199886e-01 -0x1.f5435146bb61ap-4
should be: -1.2237865208199888e-01 -0x1.f5435146bb61cp-4
difference: 2.7755575615628914e-17 0x1.0000000000000p-55
ulp : 2.0000
max.ulp : 1.0000
Maximal error of real part of: clog10
is : 3 ulp
accepted: 3 ulp
Maximal error of imaginary part of: clog10
is : 2 ulp
accepted: 1 ulp
This is actually resulting from atan2 becoming *more* accurate (atan2
(-0x6.d940dp-4, 0x1.7a858p+0) should ideally be -0x1.208cd6e841554p-2
but was -0x1.208cd6e841555p-2 from a powerpc libm built before this
change, and is -0x1.208cd6e841554p-2 from a powerpc libm built after
this change). Since these functions are not expected to be correctly
rounding by glibc's accuracy goals, neither result is a problem, but
this does imply that some of this code, although designed to be
correctly rounding, is not in fact correctly rounding (possibly
because of GCC creating fused operations where the code does not
expect it, something we've only disabled for specific functions where
it was found to cause large errors). (Of course as previously
discussed I think we should remove the slow cases where an error
analysis shows this wouldn't increase the errors much above 0.5ulp;
it's only functions such as cratan2 that are expected to be correctly
rounding, not atan2.)
* sysdeps/ieee754/dbl-64/dla.h [__FP_FAST_FMA] (DLA_FMS): Define
macro to use __builtin_fma.
* sysdeps/x86_64/fpu/dla.h: Remove file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines a type femode_t to represent the set of dynamic
floating-point control modes (such as the rounding mode and trap
enablement modes), and functions fegetmode and fesetmode to manipulate
those modes (without affecting other state such as the raised
exception flags) and a corresponding macro FE_DFL_MODE.
This patch series implements those interfaces for glibc. This first
patch adds the architecture-independent pieces, the x86 and x86_64
implementations, and the <bits/fenv.h> and ABI baseline updates for
all architectures so glibc keeps building and passing the ABI tests on
all architectures. Subsequent patches add the fegetmode and fesetmode
implementations for other architectures.
femode_t is generally an integer type - the same type as fenv_t, or as
the single element of fenv_t where fenv_t is a structure containing a
single integer (or the single relevant element, where it has elements
for both status and control registers) - except where architecture
properties or consistency with the fenv_t implementation indicate
otherwise. FE_DFL_MODE follows FE_DFL_ENV in whether it's a magic
pointer value (-1 cast to const femode_t *), a value that can be
distinguished from valid pointers by its high bits but otherwise
contains a representation of the desired register contents, or a
pointer to a constant variable (the powerpc case; __fe_dfl_mode is
added as an exported constant object, an alias to __fe_dfl_env).
Note that where architectures (that share a register between control
and status bits) gain definitions of new floating-point control or
status bits in future, the implementations of fesetmode for those
architectures may need updating (depending on whether the new bits are
control or status bits and what the implementation does with
previously unknown bits), just like existing implementations of
<fenv.h> functions that take care not to touch reserved bits may need
updating when the set of reserved bits changes. (As any new bits are
outside the scope of ISO C, that's just a quality-of-implementation
issue for supporting them, not a conformance issue.)
As with fenv_t, femode_t should properly include any software DFP
rounding mode (and for both fenv_t and femode_t I'd consider that
fragment of DFP support appropriate for inclusion in glibc even in the
absence of the rest of libdfp; hardware DFP rounding modes should
already be included if the definitions of which bits are status /
control bits are correct).
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500). Other architecture versions are untested.
* math/fegetmode.c: New file.
* math/fesetmode.c: Likewise.
* sysdeps/i386/fpu/fegetmode.c: Likewise.
* sysdeps/i386/fpu/fesetmode.c: Likewise.
* sysdeps/x86_64/fpu/fegetmode.c: Likewise.
* sysdeps/x86_64/fpu/fesetmode.c: Likewise.
* math/fenv.h: Update comment on inclusion of <bits/fenv.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fegetmode): New function
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetmode): Likewise.
* bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (femode_t): New
typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/aarch64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/alpha/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/arm/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/hppa/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/ia64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/m68k/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/microblaze/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/mips/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/nios2/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/powerpc/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__fe_dfl_mode): New variable
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/s390/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sh/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sparc/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/tile/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/x86/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* manual/arith.texi (FE_DFL_MODE): Document macro.
(fegetmode): Document function.
(fesetmode): Likewise.
* math/Versions (fegetmode): New libm symbol at version
GLIBC_2.25.
(fesetmode): Likewise.
* math/Makefile (libm-support): Add fegetmode and fesetmode.
(tests): Add test-femode and test-femode-traps.
* math/test-femode-traps.c: New file.
* math/test-femode.c: Likewise.
* sysdeps/powerpc/fpu/fenv_const.c (__fe_dfl_mode): Declare as
alias for __fe_dfl_env.
* sysdeps/powerpc/nofpu/fenv_const.c (__fe_dfl_mode): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fenv_const.c
(__fe_dfl_mode): Likewise.
* sysdeps/powerpc/Versions (__fe_dfl_mode): New libm symbol at
version GLIBC_2.25.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is transition penalty when SSE instructions are mixed with 256-bit
AVX or 512-bit AVX512 load instructions. Since _dl_runtime_resolve_avx
and _dl_runtime_profile_avx512 save/restore 256-bit YMM/512-bit ZMM
registers, there is transition penalty when SSE instructions are used
with lazy binding on AVX and AVX512 processors.
To avoid SSE transition penalty, if only the lower 128 bits of the first
8 vector registers are non-zero, we can preserve %xmm0 - %xmm7 registers
with the zero upper bits.
For AVX and AVX512 processors which support XGETBV with ECX == 1, we can
use XGETBV with ECX == 1 to check if the upper 128 bits of YMM registers
or the upper 256 bits of ZMM registers are zero. We can restore only the
non-zero portion of vector registers with AVX/AVX512 load instructions
which will zero-extend upper bits of vector registers.
This patch adds _dl_runtime_resolve_sse_vex which saves and restores
XMM registers with 128-bit AVX store/load instructions. It is used to
preserve YMM/ZMM registers when only the lower 128 bits are non-zero.
_dl_runtime_resolve_avx_opt and _dl_runtime_resolve_avx512_opt are added
and used on AVX/AVX512 processors supporting XGETBV with ECX == 1 so
that we store and load only the non-zero portion of vector registers.
This avoids SSE transition penalty caused by _dl_runtime_resolve_avx and
_dl_runtime_profile_avx512 when only the lower 128 bits of vector
registers are used.
_dl_runtime_resolve_avx_slow is added and used for AVX processors which
don't support XGETBV with ECX == 1. Since there is no SSE transition
penalty on AVX512 processors which don't support XGETBV with ECX == 1,
_dl_runtime_resolve_avx512_slow isn't provided.
[BZ #20495]
[BZ #20508]
* sysdeps/x86/cpu-features.c (init_cpu_features): For Intel
processors, set Use_dl_runtime_resolve_slow and set
Use_dl_runtime_resolve_opt if XGETBV suports ECX == 1.
* sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt):
New.
(bit_arch_Use_dl_runtime_resolve_slow): Likewise.
(index_arch_Use_dl_runtime_resolve_opt): Likewise.
(index_arch_Use_dl_runtime_resolve_slow): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Use
_dl_runtime_resolve_avx512_opt and _dl_runtime_resolve_avx_opt
if Use_dl_runtime_resolve_opt is set. Use
_dl_runtime_resolve_slow if Use_dl_runtime_resolve_slow is set.
* sysdeps/x86_64/dl-trampoline.S: Include <cpu-features.h>.
(_dl_runtime_resolve_opt): New. Defined for AVX and AVX512.
(_dl_runtime_resolve): Add one for _dl_runtime_resolve_sse_vex.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx_slow):
New.
(_dl_runtime_resolve_opt): Likewise.
(_dl_runtime_profile): Define only if _dl_runtime_profile is
defined.
|
|
|
|
|
|
|
|
|
|
| |
This is only used for the float and double variants.
Instead, just add it to the type specific list of files,
and remove all stubs, and remove the declaration from
math_private.h.
I verified x86_64, i486, ia64, m68k, and ppc64 build.
|
|
|
|
|
|
|
|
|
| |
When stack is re-aligned in _dl_runtime_resolve, there is no need to
adjust CFA when allocating register save area on stack.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Don't
adjust CFA when allocating register save area on re-aligned
stack.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines an fesetexcept function for setting floating-point
exception flags without the side-effect of causing enabled traps to be
taken.
This patch series implements this function for glibc. The present
patch adds the fallback stub implementation, x86 and x86_64
implementations, documentation, tests and ABI baseline updates. The
remaining patches, some of them untested, add implementations for
other architectures. The implementations generally follow those of
the fesetexceptflag function.
As for fesetexceptflag, the approach taken for architectures where
setting flags causes enabled traps to be taken is to set the flags
(and potentially cause traps) rather than refusing to set the flags
and returning an error. Since ISO C and TS 18661 provide no way to
enable traps, this is formally in accordance with the standards.
The NEWS entry should be considered a placeholder, since this patch
series is intended to be followed by further such series adding other
TS 18661-1 features, so that the NEWS entry would end up looking more
like
* New <fenv.h> features from TS 18661-1:2014 are added to libm: the
fesetexcept, fetestexceptflag, fegetmode and fesetmode functions,
the femode_t type and the FE_DFL_MODE macro.
with hopefully more such entries for other features, rather than
having an entry for a single function in the end.
I believe we have consensus for adding TS 18661-1 interfaces as per
<https://sourceware.org/ml/libc-alpha/2016-06/msg00421.html>.
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500).
* math/fesetexcept.c: New file.
* sysdeps/i386/fpu/fesetexcept.c: Likewise.
* sysdeps/x86_64/fpu/fesetexcept.c: Likewise.
* math/fenv.h: Define
__GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION and include
<bits/libc-header-start.h> instead of including <features.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetexcept): New function
declaration.
* manual/arith.texi (fesetexcept): Document function.
* math/Versions (fesetexcept): New libm symbol at version
GLIBC_2.25.
* math/Makefile (libm-support): Add fesetexcept.
(tests): Add test-fesetexcept and test-fesetexcept-traps.
* math/test-fesetexcept.c: New file.
* math/test-fesetexcept-traps.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Vector math functions require -ffast-math which sets -ffinite-math-only,
so it is needed to call finite scalar versions (which are called from
vector functions in some cases).
Since finite version of pow() returns qNaN instead of 1.0 for several
inputs, those inputs are excluded for tests of vector math functions.
[BZ #20033]
* sysdeps/x86_64/fpu/multiarch/svml_d_exp2_core_sse4.S: Call
finite version.
* sysdeps/x86_64/fpu/multiarch/svml_d_exp4_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_exp8_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_log2_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_log4_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_log8_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_pow2_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_pow4_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_pow8_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_expf16_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_expf4_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_expf8_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_logf16_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_logf4_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_logf8_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_powf16_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_powf4_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_powf8_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_exp2_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_log2_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_pow2_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_expf4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_logf4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_powf4_core.S: Likewise.
* math/libm-test.inc (pow_test_data): Exclude tests for qNaN
in power zero.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't compile do_test with -mavx, -mavx nor -mavx512 since they won't run
on non-AVX machines.
[BZ #20384]
* sysdeps/x86_64/fpu/Makefile (extra-test-objs): Add
test-double-libmvec-sincos-avx-main.o,
test-double-libmvec-sincos-avx2-main.o,
test-double-libmvec-sincos-main.o,
test-float-libmvec-sincosf-avx-main.o,
test-float-libmvec-sincosf-avx2-main.o and
test-float-libmvec-sincosf-main.o.
test-float-libmvec-sincosf-avx512-main.o.
($(objpfx)test-double-libmvec-sincos): Also link with
$(objpfx)test-double-libmvec-sincos-main.o.
($(objpfx)test-double-libmvec-sincos-avx): Also link with
$(objpfx)test-double-libmvec-sincos-avx-main.o.
($(objpfx)test-double-libmvec-sincos-avx2): Also link with
$(objpfx)test-double-libmvec-sincos-avx2-main.o.
($(objpfx)test-float-libmvec-sincosf): Also link with
$(objpfx)test-float-libmvec-sincosf-main.o.
($(objpfx)test-float-libmvec-sincosf-avx): Also link with
$(objpfx)test-float-libmvec-sincosf-avx2-main.o.
[$(config-cflags-avx512) == yes] (extra-test-objs): Add
test-double-libmvec-sincos-avx512-main.o and
($(objpfx)test-double-libmvec-sincos-avx512): Also link with
$(objpfx)test-double-libmvec-sincos-avx512-main.o.
($(objpfx)test-float-libmvec-sincosf-avx512): Also link with
$(objpfx)test-float-libmvec-sincosf-avx512-main.o.
(CFLAGS-test-double-libmvec-sincos.c): Removed.
(CFLAGS-test-float-libmvec-sincosf.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-main.c): New.
(CFLAGS-test-double-libmvec-sincos-avx-main.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx2-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx2-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx512-main.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx.c): Set to -DREQUIRE_AVX.
(CFLAGS-test-float-libmvec-sincosf-avx.c ): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx2.c): Set to
-DREQUIRE_AVX2.
(CFLAGS-test-float-libmvec-sincosf-avx2.c ): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx512.c): Set to
-DREQUIRE_AVX512F.
(CFLAGS-test-float-libmvec-sincosf-avx512.c): Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos.c: Rewritten.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx-main.c: New
file.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx2-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx512-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx2-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx512-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-main.c:
Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since _dl_tlsdesc_dynamic is called via PLT, we need to add 8 bytes for
push in the PLT entry to align the stack.
[BZ #20309]
* configure.ac (have-mtls-dialect-gnu2): Set to yes if
-mtls-dialect=gnu2 works.
* configure: Regenerated.
* elf/Makefile [have-mtls-dialect-gnu2 = yes]
(tests): Add tst-gnu2-tls1.
(modules-names): Add tst-gnu2-tls1mod.
($(objpfx)tst-gnu2-tls1): New.
(tst-gnu2-tls1mod.so-no-z-defs): Likewise.
(CFLAGS-tst-gnu2-tls1mod.c): Likewise.
* elf/tst-gnu2-tls1.c: New file.
* elf/tst-gnu2-tls1mod.c: Likewise.
* sysdeps/x86_64/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Add 8
bytes for push in the PLT entry to align the stack.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If assembler doesn't support AVX512DQ, _dl_runtime_resolve_avx is used
to save the first 8 vector registers, which only saves the lower 256
bits of vector register, for lazy binding. When it is called on AVX512
platform, the upper 256 bits of ZMM registers are clobbered. Parameters
passed in ZMM registers will be wrong when the function is called the
first time. This patch requires binutils 2.24, whose assembler can store
and load ZMM registers, to build x86-64 glibc. Since mathvec library
needs assembler support for AVX512DQ, we disable mathvec if assembler
doesn't support AVX512DQ.
[BZ #20139]
* config.h.in (HAVE_AVX512_ASM_SUPPORT): Renamed to ...
(HAVE_AVX512DQ_ASM_SUPPORT): This.
* sysdeps/x86_64/configure.ac: Require assembler from binutils
2.24 or above.
(HAVE_AVX512_ASM_SUPPORT): Removed.
(HAVE_AVX512DQ_ASM_SUPPORT): New.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/dl-trampoline.S: Make HAVE_AVX512_ASM_SUPPORT
check unconditional.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c: Likewise.
* sysdeps/x86_64/multiarch/memcpy.S: Likewise.
* sysdeps/x86_64/multiarch/memcpy_chk.S: Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove.S: Likewise.
* sysdeps/x86_64/multiarch/memmove_chk.S: Likewise.
* sysdeps/x86_64/multiarch/mempcpy.S: Likewise.
* sysdeps/x86_64/multiarch/mempcpy_chk.S: Likewise.
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memset-avx512-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/multiarch/memset.S: Likewise.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: Check
HAVE_AVX512DQ_ASM_SUPPORT instead of HAVE_AVX512_ASM_SUPPORT.
* sysdeps/x86_64/fpu/multiarch/svml_d_exp8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_log8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_pow8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos8_core_avx512.:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_expf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_logf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_powf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf16_core_avx51:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sinf16_core_avx512.S:
Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
current vector function declaration "#pragma omp declare simd notinbranch",
according to which vector sincos should have vector of pointers for second and
third parameters. It is fixed with implementation as wrapper to version
having second and third parameters as pointers.
[BZ #20024]
* sysdeps/x86/fpu/test-math-vector-sincos.h: New.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos2_core_sse4.S: Fixed ABI
of this implementation of vector function.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos4_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_d_sincos8_core_avx512.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf16_core_avx512.S:
Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf4_core_sse4.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/svml_s_sincosf8_core_avx2.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos2_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos4_core_avx.S: Likewise.
* sysdeps/x86_64/fpu/svml_d_sincos8_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf16_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf4_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf8_core.S: Likewise.
* sysdeps/x86_64/fpu/svml_s_sincosf8_core_avx.S: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Use another wrapper
for testing vector sincos with fixed ABI.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen16-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-float-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx.c: New test.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf.c: Likewise.
* sysdeps/x86_64/fpu/Makefile: Added new tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Although the Enhanced REP MOVSB/STOSB (ERMS) implementations of memmove,
memcpy, mempcpy and memset aren't used by the current processors, this
patch adds Prefer_ERMS check in memmove, memcpy, mempcpy and memset so
that they can be used in the future.
* sysdeps/x86/cpu-features.h (bit_arch_Prefer_ERMS): New.
(index_arch_Prefer_ERMS): Likewise.
* sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Return
__memcpy_erms for Prefer_ERMS.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S
(__memmove_erms): Enabled for libc.a.
* ysdeps/x86_64/multiarch/memmove.S (__libc_memmove): Return
__memmove_erms or Prefer_ERMS.
* sysdeps/x86_64/multiarch/mempcpy.S (__mempcpy): Return
__mempcpy_erms for Prefer_ERMS.
* sysdeps/x86_64/multiarch/memset.S (memset): Return
__memset_erms for Prefer_ERMS.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in
<https://sourceware.org/ml/libc-alpha/2016-05/msg00577.html>, TS
18661-1 disallows ceil, floor, round and trunc functions from raising
the "inexact" exception, in accordance with general IEEE 754 semantics
for when that exception is raised. Fixing this for x87 floating point
is more complicated than for the other versions of these functions,
because they use the frndint instruction that raises "inexact" and
this can only be avoided by saving and restoring the whole
floating-point environment.
As I noted in
<https://sourceware.org/ml/libc-alpha/2016-06/msg00128.html>, I have
now implemented a GCC option -fno-fp-int-builtin-inexact for GCC 7,
such that GCC will inline these functions on x86, without caring about
"inexact", when the default -ffp-int-builtin-inexact is in effect.
This allows users to get optimized code depending on the options they
pass to the compiler, while making the out-of-line functions follow TS
18661-1 semantics and avoid "inexact".
This patch duly fixes the out-of-line trunc function implementations
to avoid "inexact", in the same way as the nearbyint implementations.
I do not know how the performance of implementations such as these
based on saving the environment and changing the rounding mode
temporarily compares to that of the C versions or SSE 4.1 versions (of
course, for 32-bit x86 SSE implementations still need to get the
return value in an x87 register); it's entirely possible other
implementations could be faster in some cases.
Tested for x86_64 and x86.
[BZ #15479]
* sysdeps/i386/fpu/s_trunc.S (__trunc): Save and restore
floating-point environment rather than just control word.
* sysdeps/i386/fpu/s_truncf.S (__truncf): Likewise.
* sysdeps/i386/fpu/s_truncl.S (__truncl): Save and restore
floating-point environment, with "invalid" exceptions merged in,
rather than just control word.
* sysdeps/x86_64/fpu/s_truncl.S (__truncl): Likewise.
* math/libm-test.inc (trunc_test_data): Do not allow spurious
"inexact" exceptions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in
<https://sourceware.org/ml/libc-alpha/2016-05/msg00577.html>, TS
18661-1 disallows ceil, floor, round and trunc functions from raising
the "inexact" exception, in accordance with general IEEE 754 semantics
for when that exception is raised. Fixing this for x87 floating point
is more complicated than for the other versions of these functions,
because they use the frndint instruction that raises "inexact" and
this can only be avoided by saving and restoring the whole
floating-point environment.
As I noted in
<https://sourceware.org/ml/libc-alpha/2016-06/msg00128.html>, I have
now implemented a GCC option -fno-fp-int-builtin-inexact for GCC 7,
such that GCC will inline these functions on x86, without caring about
"inexact", when the default -ffp-int-builtin-inexact is in effect.
This allows users to get optimized code depending on the options they
pass to the compiler, while making the out-of-line functions follow TS
18661-1 semantics and avoid "inexact".
This patch duly fixes the out-of-line floor function implementations
to avoid "inexact", in the same way as the nearbyint implementations.
I do not know how the performance of implementations such as these
based on saving the environment and changing the rounding mode
temporarily compares to that of the C versions or SSE 4.1 versions (of
course, for 32-bit x86 SSE implementations still need to get the
return value in an x87 register); it's entirely possible other
implementations could be faster in some cases.
Tested for x86_64 and x86.
[BZ #15479]
* sysdeps/i386/fpu/s_floor.S (__floor): Save and restore
floating-point environment rather than just control word.
* sysdeps/i386/fpu/s_floorf.S (__floorf): Likewise.
* sysdeps/i386/fpu/s_floorl.S (__floorl): Save and restore
floating-point environment, with "invalid" exceptions merged in,
rather than just control word.
* sysdeps/x86_64/fpu/s_floorl.S (__floorl): Likewise.
* math/libm-test.inc (floor_test_data): Do not allow spurious
"inexact" exceptions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in
<https://sourceware.org/ml/libc-alpha/2016-05/msg00577.html>, TS
18661-1 disallows ceil, floor, round and trunc functions from raising
the "inexact" exception, in accordance with general IEEE 754 semantics
for when that exception is raised. Fixing this for x87 floating point
is more complicated than for the other versions of these functions,
because they use the frndint instruction that raises "inexact" and
this can only be avoided by saving and restoring the whole
floating-point environment.
As I noted in
<https://sourceware.org/ml/libc-alpha/2016-06/msg00128.html>, I have
now implemented a GCC option -fno-fp-int-builtin-inexact for GCC 7,
such that GCC will inline these functions on x86, without caring about
"inexact", when the default -ffp-int-builtin-inexact is in effect.
This allows users to get optimized code depending on the options they
pass to the compiler, while making the out-of-line functions follow TS
18661-1 semantics and avoid "inexact".
This patch duly fixes the out-of-line ceil function implementations to
avoid "inexact", in the same way as the nearbyint implementations.
I do not know how the performance of implementations such as these
based on saving the environment and changing the rounding mode
temporarily compares to that of the C versions or SSE 4.1 versions (of
course, for 32-bit x86 SSE implementations still need to get the
return value in an x87 register); it's entirely possible other
implementations could be faster in some cases.
Tested for x86_64 and x86.
[BZ #15479]
* sysdeps/i386/fpu/s_ceil.S (__ceil): Save and restore
floating-point environment rather than just control word.
* sysdeps/i386/fpu/s_ceilf.S (__ceilf): Likewise.
* sysdeps/i386/fpu/s_ceill.S (__ceill): Save and restore
floating-point environment, with "invalid" exceptions merged in,
rather than just control word.
* sysdeps/x86_64/fpu/s_ceill.S (__ceill): Likewise.
* math/libm-test.inc (ceil_test_data): Do not allow spurious
"inexact" exceptions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The x86_64 and i386 versions of scalbl return sNaN for some cases of
sNaN input and are missing "invalid" exceptions for other cases. This
results from overly complicated code that either returns a NaN input,
or discards both inputs when one is NaN and loads a NaN from memory.
This patch fixes this by simplifying the code to add the arguments
when either one is NaN.
Tested for x86_64 and x86.
[BZ #20296]
* sysdeps/i386/fpu/e_scalbl.S (__ieee754_scalbl): Add arguments
when either argument is a NaN.
* sysdeps/x86_64/fpu/e_scalbl.S (__ieee754_scalbl): Likewise.
* math/libm-test.inc (scalb_test_data): Add sNaN tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The i386 implementations of nearbyint functions, and x86_64
nearbyintl, contain code to mask the "inexact" exception. However,
the fnstenv instruction has the effect of masking all exceptions, so
this masking code has been redundant since fnstenv was added to those
implementations (by commit 846d9a4a3acdb4939ca7bf6aed48f9f6f26911be;
commit 71d1b0166b4ace0d804af2993b3815758b852efc added the test
math/test-nearbyint-except-2.c that verifies these functions do work
when called with "inexact" traps enabled); this patch removes the
redundant code.
Tested for x86_64 and x86.
* sysdeps/i386/fpu/s_nearbyint.S (__nearbyint): Do not mask
"inexact" exceptions after fnstenv.
* sysdeps/i386/fpu/s_nearbyintf.S (__nearbyintf): Likewise.
* sysdeps/i386/fpu/s_nearbyintl.S (__nearbyintl): Likewise.
* sysdeps/x86_64/fpu/s_nearbyintl.S (__nearbyintl): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
defined in libmvec_nonshared.a (bug 19654).
[BZ #19654]
* sysdeps/x86_64/fpu/Makefile: Added new tests.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx-main.c: New.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx2-main.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx2-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx512-main.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx512-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-main.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-alias.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx-main.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx2-main.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx2-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx512-main.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx512-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-avx512.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-main.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias-mod.c: Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-alias.c: Likewise.
* sysdeps/x86_64/fpu/test-libmvec-alias-mod.c: Likewise.
|
|
|
|
|
| |
Identical definitions of dtv_t and TLS_DTV_UNALLOCATED were
repeated for all architectures using DTVs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some architectures have their own versions of fdim functions, which
are missing errno setting (bug 6796) and may also return sNaN instead
of qNaN for sNaN input, in the case of the x86 / x86_64 long double
versions (bug 20256).
These versions are not actually doing anything that a compiler
couldn't generate, just straightforward comparisons / arithmetic (and,
in the x86 / x86_64 case, testing for NaNs with fxam, which isn't
actually needed once you use an unordered comparison and let the NaNs
pass through the same subtraction as non-NaN inputs). This patch
removes the x86 / x86_64 / powerpc versions, so that those
architectures use the generic C versions, which correctly handle
setting errno and deal properly with sNaN inputs. This seems better
than dealing with setting errno in lots of .S versions.
The i386 versions also return results with excess range and precision,
which is not appropriate for a function exactly defined by reference
to IEEE operations. For errno setting to work correctly on overflow,
it's necessary to remove excess range with math_narrow_eval, which
this patch duly does in the float and double versions so that the
tests can reliably pass on x86. For float, this avoids any double
rounding issues as the long double precision is more than twice that
of float. For double, double rounding issues will need to be
addressed separately, so this patch does not fully fix bug 20255.
Tested for x86_64, x86 and powerpc.
[BZ #6796]
[BZ #20255]
[BZ #20256]
* math/s_fdim.c: Include <math_private.h>.
(__fdim): Use math_narrow_eval on result.
* math/s_fdimf.c: Include <math_private.h>.
(__fdimf): Use math_narrow_eval on result.
* sysdeps/i386/fpu/s_fdim.S: Remove file.
* sysdeps/i386/fpu/s_fdimf.S: Likewise.
* sysdeps/i386/fpu/s_fdiml.S: Likewise.
* sysdeps/i386/i686/fpu/s_fdim.S: Likewise.
* sysdeps/i386/i686/fpu/s_fdimf.S: Likewise.
* sysdeps/i386/i686/fpu/s_fdiml.S: Likewise.
* sysdeps/powerpc/fpu/s_fdim.c: Likewise.
* sysdeps/powerpc/fpu/s_fdimf.c: Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_fdim.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_fdim.c: Likewise.
* sysdeps/x86_64/fpu/s_fdiml.S: Likewise.
* math/libm-test.inc (fdim_test_data): Expect errno setting on
overflow. Add sNaN tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The i386/x86_64 versions of log2l return sNaN for sNaN input. This
patch fixes them to add NaN inputs to themselves so that qNaN is
returned in this case.
Tested for x86_64 and x86.
[BZ #20235]
* sysdeps/i386/fpu/e_log2l.S (__ieee754_log2l): Add NaN input to
itself.
* sysdeps/x86_64/fpu/e_log2l.S (__ieee754_log2l): Likewise.
* math/libm-test.inc (log2_test_data): Add sNaN tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since __libc_start_main in libc.so is called very early, lazy binding
isn't relevant. Always call __libc_start_main with indirect branch via
GOT to avoid extra branch to PLT slot. In case of static executable,
ld in binutils 2.26 or above can convert indirect branch into direct
branch:
0000000000400a80 <_start>:
400a80: 31 ed xor %ebp,%ebp
400a82: 49 89 d1 mov %rdx,%r9
400a85: 5e pop %rsi
400a86: 48 89 e2 mov %rsp,%rdx
400a89: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp
400a8d: 50 push %rax
400a8e: 54 push %rsp
400a8f: 49 c7 c0 20 1b 40 00 mov $0x401b20,%r8
400a96: 48 c7 c1 90 1a 40 00 mov $0x401a90,%rcx
400a9d: 48 c7 c7 c0 03 40 00 mov $0x4003c0,%rdi
400aa4: 67 e8 96 09 00 00 addr32 callq 401440 <__libc_start_main>
400aaa: f4 hlt
* sysdeps/x86_64/start.S (_start): Always indirect branch to
__libc_start_main via GOT.
|
|
|
|
|
|
|
|
|
| |
Since x86-64 no longer uses memory copy functions, add dummy memcopy.h
and wordcopy.c to reduce code size. It reduces the size of libc.so by
about 1 KB.
* sysdeps/x86_64/memcopy.h: New file.
* sysdeps/x86_64/wordcopy.c: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The i386/x86_64 versions of log1pl return sNaN for sNaN input. This
patch fixes them to add a NaN input to itself so that qNaN is returned
in this case.
Tested for x86_64 and x86.
[BZ #20229]
* sysdeps/i386/fpu/s_log1pl.S (__log1pl): Add NaN input to itself.
* sysdeps/x86_64/fpu/s_log1pl.S (__log1pl): Likewise.
* math/libm-test.inc (log1p_test_data): Add sNaN tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The i386/x86_64 versions of log10l return sNaN for sNaN input. This
patch fixes them to add a NaN input to itself so that qNaN is returned
in this case.
Tested for x86_64 and x86.
[BZ #20228]
* sysdeps/i386/fpu/e_log10l.S (__ieee754_log10l): Add NaN input to
itself.
* sysdeps/x86_64/fpu/e_log10l.S (__ieee754_log10l): Likewise.
* math/libm-test.inc (log10_test_data): Add sNaN tests.
|