| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue was we were expecting not matches with CHAR before the start of
the string in the page cross case.
The check code in the page cross case:
```
and $0xffffffffffffffc0,%rax
vmovdqa64 (%rax),%zmm17
vpcmpneqb %zmm17,%zmm16,%k1
vptestmb %zmm17,%zmm17,%k0{%k1}
kmovq %k0,%rax
inc %rax
shr %cl,%rax
je L(continue)
```
expects that all characters that neither match null nor CHAR will be
1s in `rax` prior to the `inc`. Then the `inc` will overflow all of
the 1s where no relevant match was found.
This is incorrect in the page-cross case, as the
`vmovdqa64 (%rax),%zmm17` loads from before the start of the input
string.
If there are matches with CHAR before the start of the string, `rax`
won't properly overflow.
The fix is quite simple. Just replace:
```
inc %rax
shr %cl,%rax
```
With:
```
sar %cl,%rax
inc %rax
```
The arithmetic shift will clear any matches prior to the start of the
string while maintaining the signbit so the 1s can properly overflow
to zero in the case of no matches.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 7da08862471dfec6fdae731c2a5f351ad485c71f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ffsll function randomly regress by ~20%, depending on how code gets
aligned in memory. Ffsll function code size is 17 bytes. Since default
function alignment is 16 bytes, it can load on 16, 32, 48 or 64 bytes
aligned memory. When ffsll function load at 16, 32 or 64 bytes aligned
memory, entire code fits in single 64 bytes cache line. When ffsll
function load at 48 bytes aligned memory, it splits in two cache line,
hence random regression.
Ffsll function size reduction from 17 bytes to 12 bytes ensures that it
will always fit in single 64 bytes cache line.
This patch fixes ffsll function random performance regression.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit 9d94997b5f9445afd4f2bccc5fa60ff7c4361ec1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
_dl_tlsdesc_undefweak and _dl_tlsdesc_dynamic access the thread pointer
via the tcb field in TCB:
_dl_tlsdesc_undefweak:
_CET_ENDBR
movq 8(%rax), %rax
subq %fs:0, %rax
ret
_dl_tlsdesc_dynamic:
...
subq %fs:0, %rax
movq -8(%rsp), %rdi
ret
Since the tcb field in TCB is a pointer, %fs:0 is a 32-bit location,
not 64-bit. It should use "sub %fs:0, %RAX_LP" instead. Since
_dl_tlsdesc_undefweak returns ptrdiff_t and _dl_make_tlsdesc_dynamic
returns void *, RAX_LP is appropriate here for x32 and x86-64. This
fixes BZ #31185.
(cherry picked from commit 81be2a61dafc168327c1639e97b6dae128c7ccf3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On x32, I got
FAIL: elf/tst-tlsgap
$ gdb elf/tst-tlsgap
...
open tst-tlsgap-mod1.so
Thread 2 "tst-tlsgap" received signal SIGSEGV, Segmentation fault.
[Switching to LWP 2268754]
_dl_tlsdesc_dynamic () at ../sysdeps/x86_64/dl-tlsdesc.S:108
108 movq (%rsi), %rax
(gdb) p/x $rsi
$4 = 0xf7dbf9005655fb18
(gdb)
This is caused by
_dl_tlsdesc_dynamic:
_CET_ENDBR
/* Preserve call-clobbered registers that we modify.
We need two scratch regs anyway. */
movq %rsi, -16(%rsp)
movq %fs:DTV_OFFSET, %rsi
Since the dtv field in TCB is a pointer, %fs:DTV_OFFSET is a 32-bit
location, not 64-bit. Load the dtv field to RSI_LP instead of rsi.
This fixes BZ #31184.
(cherry picked from commit 3502440397bbb840e2f7223734aa5cc2cc0e29b6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With multiarch disabled, the default memmove implementation provides
the fortify routines for memcpy, mempcpy, and memmove. However, it
does not provide the internal hidden definitions used when building
with fortify enabled. The memset has a similar issue.
Checked on x86_64-linux-gnu building with different options:
default and --disable-multi-arch plus default, --disable-default-pie,
--enable-fortify-source={2,3}, and --enable-fortify-source={2,3}
with --disable-default-pie.
Tested-by: Andreas K. Huettel <dilfridge@gentoo.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
(cherry picked from commit 51cb52214fcd72849c640b12f5099ed3ac776181)
|
|
|
|
|
|
|
|
|
| |
Based on feedback by Mike Gilbert <floppym@gentoo.org>
Linux-6.1.38-dist x86_64 AMD Phenom-tm- II X6 1055T Processor
-march=amdfam10
failures occur for x32 ABI
Signed-off-by: Andreas K. Hüttel <dilfridge@gentoo.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Bump autoconf requirement to 2.71 to allow regenerating configure on
more recent distributions. autoconf 2.71 has been in Fedora since F36
and is the current version in Debian stable (bookworm). It appears to
be current in Gentoo as well.
All sysdeps configure and preconfigure scripts have also been
regenerated; all changes are trivial transformations that do not affect
functionality.
Signed-off-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
The change is meant to avoid unwanted PLT entries for the wmemset and
wcrtomb routines when _FORTIFY_SOURCE is set.
On top of that, ensure that *_chk routines have their hidden builtin
definitions available.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
|
| |
If libc_hidden_builtin_{def,proto} isn't properly set for *_chk routines,
there are unwanted PLT entries in libc.so.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The first segment in a shared library may be read-only, not executable.
To support LD_PREFER_MAP_32BIT_EXEC on such shared libraries, we also
check MAP_DENYWRITE to decide if MAP_32BIT should be passed to mmap.
Normally the first segment is mapped with MAP_COPY, which is defined
as (MAP_PRIVATE | MAP_DENYWRITE). But if the segment alignment is
greater than the page size, MAP_COPY isn't used to allocate enough
space to ensure that the segment can be properly aligned. Map the
first segment with MAP_COPY in this case to fix BZ #30452.
|
|
|
|
|
|
|
| |
These files could be useful to any port that wants to use ld.so.cache.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On i386 and x86_64, for libc.a specifically, __mempcpy_chk calls
mempcpy which leads POSIX routines to call non-POSIX mempcpy indirectly.
This leads the linknamespace test to fail when glibc is built with
__FORTIFY_SOURCE=3.
Since calling mempcpy doesn't bring any benefit for libc.a, directly
call __mempcpy instead.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
|
| |
Since the assembly source file with -evex suffix should use YMM registers,
not ZMM registers, include x86-evex256-vecs.h by default to use YMM
registers in memcmpeq-evex.S
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
| |
Applying this commit results in bit-identical rebuild of libc.so.6
math/libm.so.6 elf/ld-linux-x86-64.so.2 mathvec/libmvec.so.1
Reviewed-by: Florian Weimer <fweimer@redhat.com>
|
|
|
|
|
|
|
| |
Applying this commit results in a bit-identical rebuild of
mathvec/libmvec.so.1 (which is the only binary that gets rebuilt).
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables libmvec on AArch64. The proposed change is mainly
implementing build infrastructure to add the new routines to ABI,
tests and benchmarks. I have demonstrated how this all fits together
by adding implementations for vector cos, in both single and double
precision, targeting both Advanced SIMD and SVE.
The implementations of the routines themselves are just loops over the
scalar routine from libm for now, as we are more concerned with
getting the plumbing right at this point. We plan to contribute vector
routines from the Arm Optimized Routines repo that are compliant with
requirements described in the libmvec wiki.
Building libmvec requires minimum GCC 10 for SVE ACLE. To avoid raising
the minimum GCC by such a big jump, we allow users to disable libmvec
if their compiler is too old.
Note that at this point users have to manually call the vector math
functions. This seems to be acceptable to some downstream users.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
|
|
|
|
| |
It is essentially nptl-only.
|
|
|
|
|
|
|
| |
This makes the prefer_map_32bit_exec tunable no longer Linux-specific.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230423215526.346009-4-bugaevc@gmail.com>
|
|
|
|
|
|
|
| |
This is based on the Linux port's version, but laid out to match Mach's
struct i386_thread_state, much like the i386 version does.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
|
|
|
|
|
|
|
|
|
| |
The divss instruction clobbers its first argument, and the constraints
need to reflect that. Fortunately, with GCC 12, generated code does
not actually change, so there is no externally visible bug.
Suggested-by: Jakub Jelinek <jakub@redhat.com>
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
|
| |
Just like the other existing rtld-str* files, this provides rtld with
usable versions of stpncpy and strncpy.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230319151017.531737-22-bugaevc@gmail.com>
|
|
|
|
|
|
|
|
| |
The source code is the same as sysdeps/i386/htl/tcb-offsets.sym, but of
course the produced tcb-offsets.h will be different.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230319151017.531737-21-bugaevc@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
And make always supported. The configure option was added on glibc 2.25
and some features require it (such as hwcap mask, huge pages support, and
lock elisition tuning). It also simplifies the build permutations.
Changes from v1:
* Remove glibc.rtld.dynamic_sort changes, it is orthogonal and needs
more discussion.
* Cleanup more code.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
|
| |
This allows other targets to use the same inputs for their own libmvec
microbenchmarks without having to duplicate them in their own
subdirectory.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
|
|
|
|
|
| |
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230221211932.296459-5-bugaevc@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update libm test ulps for
commit 3efbf11fdf15ed991d2c41743921c524a867e145
Author: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Date: Tue Feb 14 11:24:59 2023 +0100
update auto-libm-test-out-hypot
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
| |
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20230212111044.610942-12-bugaevc@gmail.com>
|
| |
|
|
|
|
|
|
|
| |
Although static linker can optimize it to local call, it follows the
internal scheme to provide hidden proto and definitions.
Reviewed-by: Carlos Eduardo Seo <carlos.seo@linaro.org>
|
|
|
|
|
|
|
| |
Although static linker can optimize it to local call, it follows the
internal scheme to provide hidden proto and definitions.
Reviewed-by: Carlos Eduardo Seo <carlos.seo@linaro.org>
|
|
|
|
|
|
|
|
|
|
| |
It moves the op_t definition out to an specific header, adds
the attribute 'may-alias', and cleanup its duplicated definitions.
Checked with a build and check with run-built-tests=no for all major
Linux ABIs.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Occurs when `src` has no null-term.
Two cases:
1) Zero-length check is doing:
```
test %rdx, %rdx
jl L(zero_len)
```
which doesn't actually check zero (was at some point `decq` and the
flag never got updated).
The fix is just make the flag `jle` i.e:
```
test %rdx, %rdx
jle L(zero_len)
```
2) Length check in page-cross case checking if we should continue is
doing:
```
cmpq %r8, %rdx
jb L(page_cross_small)
```
which means we will continue searching for null-term if length ends at
the end of a page and there was no null-term in `src`.
The fix is to make the flag:
```
cmpq %r8, %rdx
jbe L(page_cross_small)
```
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vfprintf is entangled with vfwprintf (of course), __printf_fp,
__printf_fphex, __vstrfmon_l_internal, and the strfrom family of
functions. The latter use the internal snprintf functionality,
so vsnprintf is converted as well.
The simples conversion is __printf_fphex, followed by
__vstrfmon_l_internal and __printf_fp, and finally
__vfprintf_internal and __vfwprintf_internal. __vsnprintf_internal
and strfrom* are mostly consuming the new interfaces, so they
are comparatively simple.
__printf_fp is a public symbol, so the FILE *-based interface
had to preserved.
The __printf_fp rewrite does not change the actual binary-to-decimal
conversion algorithm, and digits are still not emitted directly to
the target buffer. However, the staging buffer now uses bytes
instead of wide characters, and one buffer copy is eliminated.
The changes are at least performance-neutral in my testing.
Floating point printing and snprintf improved measurably, so that
this Lua script
for i=1,5000000 do
print(i, i * math.pi)
end
runs about 5% faster for me. To preserve fprintf performance for
a simple "%d" format, this commit has some logic changes under
LABEL (unsigned_number) to avoid additional function calls. There
are certainly some very easy performance improvements here: binary,
octal and hexadecimal formatting can easily avoid the temporary work
buffer (the number of digits can be computed ahead-of-time using one
of the __builtin_clz* built-ins). Decimal formatting can use a
specialized version of _itoa_word for base 10.
The existing (inconsistent) width handling between strfmon and printf
is preserved here. __print_fp_buffer_1 would have to use
__translated_number_width to achieve ISO conformance for printf.
Test expectations in libio/tst-vtables-common.c are adjusted because
the internal staging buffer merges all virtual function calls into
one.
In general, stack buffer usage is greatly reduced, particularly for
unbuffered input streams. __printf_fp can still use a large buffer
in binary128 mode for %g, though.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
#29863]
In the case of INCORRECT usage of `memcmp(a, b, N)` where `a` and `b`
are concurrently modified as `memcmp` runs, there can be a SIGSEGV
in `L(ret_nonzero_vec_end_0)` because the sequential logic
assumes that `(rdx - 32 + rax)` is a positive 32-bit integer.
To be clear, this change does not mean the usage of `memcmp` is
supported. The program behaviour is undefined (UB) in the
presence of data races, and `memcmp` is incorrect when the values
of `a` and/or `b` are modified concurrently (data race). This UB
may manifest itself as a SIGSEGV. That being said, if we can
allow the idiomatic use cases, like those in yottadb with
opportunistic concurrency control (OCC), to execute without a
SIGSEGV, at no cost to regular use cases, then we can aim to
minimize harm to those existing users.
The fix replaces a 32-bit `addl %edx, %eax` with the 64-bit variant
`addq %rdx, %rax`. The 1-extra byte of code size from using the
64-bit instruction doesn't contribute to overall code size as the
next target is aligned and has multiple bytes of `nop` padding
before it. As well all the logic between the add and `ret` still
fits in the same fetch block, so the cost of this change is
basically zero.
The relevant sequential logic can be seen in the following
pseudo-code:
```
/*
* rsi = a
* rdi = b
* rdx = len - 32
*/
/* cmp a[0:15] and b[0:15]. Since length is known to be [17, 32]
in this case, this check is also assumed to cover a[0:(31 - len)]
and b[0:(31 - len)]. */
movups (%rsi), %xmm0
movups (%rdi), %xmm1
PCMPEQ %xmm0, %xmm1
pmovmskb %xmm1, %eax
subl %ecx, %eax
jnz L(END_NEQ)
/* cmp a[len-16:len-1] and b[len-16:len-1]. */
movups 16(%rsi, %rdx), %xmm0
movups 16(%rdi, %rdx), %xmm1
PCMPEQ %xmm0, %xmm1
pmovmskb %xmm1, %eax
subl %ecx, %eax
jnz L(END_NEQ2)
ret
L(END2):
/* Position first mismatch. */
bsfl %eax, %eax
/* The sequential version is able to assume this value is a
positive 32-bit value because the first check included bytes in
range a[0:(31 - len)] and b[0:(31 - len)] so `eax` must be
greater than `31 - len` so the minimum value of `edx` + `eax` is
`(len - 32) + (32 - len) >= 0`. In the concurrent case, however,
`a` or `b` could have been changed so a mismatch in `eax` less or
equal than `(31 - len)` is possible (the new low bound is `(16 -
len)`. This can result in a negative 32-bit signed integer, which
when zero extended to 64-bits is a random large value this out
out of bounds. */
addl %edx, %eax
/* Crash here because 32-bit negative number in `eax` zero
extends to out of bounds 64-bit offset. */
movzbl 16(%rdi, %rax), %ecx
movzbl 16(%rsi, %rax), %eax
```
This fix is quite simple, just make the `addl %edx, %eax` 64 bit (i.e
`addq %rdx, %rax`). This prevents the 32-bit zero extension
and since `eax` is still a low bound of `16 - len` the `rdx + rax`
is bound by `(len - 32) - (16 - len) >= -16`. Since we have a
fixed offset of `16` in the memory access this must be in bounds.
|
|
|
|
|
|
|
|
|
|
|
|
| |
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strncpy for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and without the fix.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strncat for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and without the fix.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
| |
Code is exactly the same for the two so better to only maintain one
version.
All math and mathvec tests pass on x86.
|
|
|
|
|
|
|
| |
1. Remove unnecessary spills.
2. Fix some small nit missed optimizations.
All math and mathvec tests pass on x86.
|
|
|
|
|
| |
Just reformat with the style convention used in other x86 assembler
files. This doesn't change libm.so or libmvec.so.
|
|
|
|
|
|
|
|
|
|
|
|
| |
```
.section .text.evex512, "ax", @progbits
```
With misspelled as:
```
.section .text.exex512, "ax", @progbits
```
|
|
|
|
| |
Many sse4/avx2/avx512 files where just in .text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implemented:
wcscat-avx2 (+ 744 bytes
wcscpy-avx2 (+ 539 bytes)
wcpcpy-avx2 (+ 577 bytes)
wcsncpy-avx2 (+1108 bytes)
wcpncpy-avx2 (+1214 bytes)
wcsncat-avx2 (+1085 bytes)
Performance Changes:
Times are from N = 10 runs of the benchmark suite and are reported
as geometric mean of all ratios of New Implementation / Best Old
Implementation. Best Old Implementation was determined with the
highest ISA implementation.
wcscat-avx2 -> 0.975
wcscpy-avx2 -> 0.591
wcpcpy-avx2 -> 0.698
wcsncpy-avx2 -> 0.730
wcpncpy-avx2 -> 0.711
wcsncat-avx2 -> 0.954
Code Size Changes:
This change increase the size of libc.so by ~5.5kb bytes. For
reference the patch optimizing the normal strcpy family functions
decreases libc.so by ~5.2kb.
Full check passes on x86-64 and build succeeds for all ISA levels w/
and w/o multiarch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implemented:
wcscat-evex (+ 905 bytes)
wcscpy-evex (+ 674 bytes)
wcpcpy-evex (+ 709 bytes)
wcsncpy-evex (+1358 bytes)
wcpncpy-evex (+1467 bytes)
wcsncat-evex (+1213 bytes)
Performance Changes:
Times are from N = 10 runs of the benchmark suite and are reported
as geometric mean of all ratios of New Implementation / Best Old
Implementation. Best Old Implementation was determined with the
highest ISA implementation.
wcscat-evex -> 0.991
wcscpy-evex -> 0.587
wcpcpy-evex -> 0.695
wcsncpy-evex -> 0.719
wcpncpy-evex -> 0.694
wcsncat-evex -> 0.979
Code Size Changes:
This change increase the size of libc.so by ~6.3kb bytes. For
reference the patch optimizing the normal strcpy family functions
decreases libc.so by ~5.7kb.
Full check passes on x86-64 and build succeeds for all ISA levels w/
and w/o multiarch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optimizations are:
1. Use more overlapping stores to avoid branches.
2. Reduce how unrolled the aligning copies are (this is more of a
code-size save, its a negative for some sizes in terms of
perf).
3. For st{r|p}n{cat|cpy} re-order the branches to minimize the
number that are taken.
Performance Changes:
Times are from N = 10 runs of the benchmark suite and are
reported as geometric mean of all ratios of
New Implementation / Old Implementation.
strcat-avx2 -> 0.998
strcpy-avx2 -> 0.937
stpcpy-avx2 -> 0.971
strncpy-avx2 -> 0.793
stpncpy-avx2 -> 0.775
strncat-avx2 -> 0.962
Code Size Changes:
function -> Bytes New / Bytes Old -> Ratio
strcat-avx2 -> 685 / 1639 -> 0.418
strcpy-avx2 -> 560 / 903 -> 0.620
stpcpy-avx2 -> 592 / 939 -> 0.630
strncpy-avx2 -> 1176 / 2390 -> 0.492
stpncpy-avx2 -> 1268 / 2438 -> 0.520
strncat-avx2 -> 1042 / 2563 -> 0.407
Notes:
1. Because of the significant difference between the
implementations they are split into three files.
strcpy-avx2.S -> strcpy, stpcpy, strcat
strncpy-avx2.S -> strncpy
strncat-avx2.S > strncat
I couldn't find a way to merge them without making the
ifdefs incredibly difficult to follow.
Full check passes on x86-64 and build succeeds for all ISA levels w/
and w/o multiarch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optimizations are:
1. Use more overlapping stores to avoid branches.
2. Reduce how unrolled the aligning copies are (this is more of a
code-size save, its a negative for some sizes in terms of
perf).
3. Improve the loop a bit (similiar to what we do in strlen with
2x vpminu + kortest instead of 3x vpminu + kmov + test).
4. For st{r|p}n{cat|cpy} re-order the branches to minimize the
number that are taken.
Performance Changes:
Times are from N = 10 runs of the benchmark suite and are
reported as geometric mean of all ratios of
New Implementation / Old Implementation.
stpcpy-evex -> 0.922
strcat-evex -> 0.985
strcpy-evex -> 0.880
strncpy-evex -> 0.831
stpncpy-evex -> 0.780
strncat-evex -> 0.958
Code Size Changes:
function -> Bytes New / Bytes Old -> Ratio
strcat-evex -> 819 / 1874 -> 0.437
strcpy-evex -> 700 / 1074 -> 0.652
stpcpy-evex -> 735 / 1094 -> 0.672
strncpy-evex -> 1397 / 2611 -> 0.535
stpncpy-evex -> 1489 / 2691 -> 0.553
strncat-evex -> 1184 / 2832 -> 0.418
Notes:
1. Because of the significant difference between the
implementations they are split into three files.
strcpy-evex.S -> strcpy, stpcpy, strcat
strncpy-evex.S -> strncpy
strncat-evex.S > strncat
I couldn't find a way to merge them without making the
ifdefs incredibly difficult to follow.
2. All implementations can be made evex512 by including
"x86-evex512-vecs.h" at the top.
3. All implementations have an optional define:
`USE_EVEX_MASKED_STORE`
Setting to one uses evex-masked stores for handling short
strings. This saves code size and branches. It's disabled
for all implementations are the moment as there are some
serious drawbacks to masked stores in certain cases, but
that may be fixed on future architectures.
Full check passes on x86-64 and build succeeds for all ISA levels w/
and w/o multiarch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Changes to generated code are:
1. In a few places use `vpcmpeqb` instead of `vpcmpneq` to save a
byte of code size.
2. Add a branch for length <= (VEC_SIZE * 6) as opposed to doing
the entire block of [VEC_SIZE * 4 + 1, VEC_SIZE * 8] in a
single basic-block (the space to add the extra branch without
changing code size is bought with the above change).
Change (2) has roughly a 20-25% speedup for sizes in [VEC_SIZE * 4 +
1, VEC_SIZE * 6] and negligible to no-cost for [VEC_SIZE * 6 + 1,
VEC_SIZE * 8]
From N=10 runs on Tigerlake:
align1,align2 ,length ,result ,New Time ,Cur Time ,New Time / Old Time
0 ,0 ,129 ,0 ,5.404 ,6.887 ,0.785
0 ,0 ,129 ,1 ,5.308 ,6.826 ,0.778
0 ,0 ,129 ,18446744073709551615 ,5.359 ,6.823 ,0.785
0 ,0 ,161 ,0 ,5.284 ,6.827 ,0.774
0 ,0 ,161 ,1 ,5.317 ,6.745 ,0.788
0 ,0 ,161 ,18446744073709551615 ,5.406 ,6.778 ,0.798
0 ,0 ,193 ,0 ,6.804 ,6.802 ,1.000
0 ,0 ,193 ,1 ,6.950 ,6.754 ,1.029
0 ,0 ,193 ,18446744073709551615 ,6.792 ,6.719 ,1.011
0 ,0 ,225 ,0 ,6.625 ,6.699 ,0.989
0 ,0 ,225 ,1 ,6.776 ,6.735 ,1.003
0 ,0 ,225 ,18446744073709551615 ,6.758 ,6.738 ,0.992
0 ,0 ,256 ,0 ,5.402 ,5.462 ,0.989
0 ,0 ,256 ,1 ,5.364 ,5.483 ,0.978
0 ,0 ,256 ,18446744073709551615 ,5.341 ,5.539 ,0.964
Rewriting with VMM API allows for memcmpeq-evex to be used with
evex512 by including "x86-evex512-vecs.h" at the top.
Complete check passes on x86-64.
|
|
|
|
|
|
|
|
|
|
| |
The only change to the existing generated code is `tzcnt` -> `bsf` to
save a byte of code size here and there.
Rewriting with VMM API allows for memcmp-evex-movbe to be used with
evex512 by including "x86-evex512-vecs.h" at the top.
Complete check passes on x86-64.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Changes from v1:
Use vec api for register.
Replace VPCMP with VPCMPEQ
Restructure and remove 1 unconditional jump.
Change page cross logic to use sall.
This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- strrchr function using 512 bit vectors.
- wcsrchr function using 512 bit vectors.
Code size data:
strrchr-evex.o 879 byte
strrchr-evex512.o 601 byte (-32%)
wcsrchr-evex.o 882 byte
wcsrchr-evex512.o 572 byte (-35%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
|
| |
This makes it more likely that the compiler can compute the strlen
argument in _startup_fatal at compile time, which is required to
avoid a dependency on strlen this early during process startup.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
|