| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Refactor files so that all implementations are in the multiarch
directory
- Moved the implementation portion of memcmp sse2 from memcmp.S to
multiarch/memcmp-sse2.S
- The non-multiarch file now only includes one of the
implementations in the multiarch directory based on the compiled
ISA level (only used for non-multiarch builds. Otherwise we go
through the ifunc selector).
2. Add ISA level build guards to different implementations.
- I.e memcmp-avx2-movsb.S which is ISA level 3 will only build if
compiled ISA level <= 3. Otherwise there is no reason to include
it as we will always use one of the ISA level 4
implementations (memcmp-evex-movbe.S).
3. Add new multiarch/rtld-{w}memcmp{eq}.S that just include the
non-multiarch {w}memcmp{eq}.S which will in turn select the best
implementation based on the compiled ISA level.
4. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
|
|
|
|
|
| |
This commit doesn't change anything in itself. It is just to add
definitions that will be needed by future patches.
|
|
|
|
|
|
|
| |
When glibc is built with x86-64 ISA level v3, SSE run-time resolvers
aren't used. For x86-64 ISA level v4 build, both SSE and AVX resolvers
are unused. Check the minimum x86-64 ISA level to exclude the unused
run-time resolvers.
|
|
|
|
|
| |
Move X86_ISA_CPU_FEATURE_USABLE_P and X86_ISA_CPU_FEATURES_ARCH_P to
where MINIMUM_X86_ISA_LEVEL and XXX_X86_ISA_LEVEL are defined.
|
|
|
|
|
|
|
|
|
| |
Add third argument to X86_ISA_CPU_FEATURES_ARCH_P macro so the runtime
CPU_FEATURES_ARCH_P check can be inverted if the
MINIMUM_X86_ISA_LEVEL is not high enough to constantly evaluate
the check.
Use this new macro to correct the backwards check in ifunc-evex.h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Factor out some of the ISA level defines in isa-level.c to
standalone header isa-level.h
2. Add new headers with ISA level dependent macros for handling
ifuncs.
Note, this file does not change any code.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
|
|
|
|
|
|
|
| |
BMI1/BMI2 are part of the ISA V3 requirements:
https://en.wikipedia.org/wiki/X86-64
And defined by GCC when building with `-march=x86-64-v3`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The lower-bound (16448) and upper-bound (SIZE_MAX / 16) are assumed
by memmove-vec-unaligned-erms.
The lower-bound is needed because memmove-vec-unaligned-erms unrolls
the loop aggressively in the L(large_memset_4x) case.
The upper-bound is needed because memmove-vec-unaligned-erms
right-shifts the value of `x86_non_temporal_threshold` by
LOG_4X_MEMCPY_THRESH (4) which without a bound may overflow.
The lack of lower-bound can be a correctness issue. The lack of
upper-bound cannot.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If an executable has copy relocations for extern protected data, that
can only work if the library containing the definition is built with
assumptions (a) the compiler emits GOT-generating relocations (b) the
linker produces R_*_GLOB_DAT instead of R_*_RELATIVE. Otherwise the
library uses its own definition directly and the executable accesses a
stale copy. Note: the GOT relocations defeat the purpose of protected
visibility as an optimization, but allow rtld to make the executable and
library use the same copy when copy relocations are present, but it
turns out this never worked perfectly.
ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA has strange semantics when both
a.so and b.so define protected var and the executable copy relocates
var: b.so accesses its own copy even with GLOB_DAT. The behavior change
is from commit 62da1e3b00b51383ffa7efc89d8addda0502e107 (x86) and then
copied to nios2 (ae5eae7cfc9c4a8297ff82ec6b794faca1976ecc) and arc
(0e7d930c4c11de896fe807f67fa1eb756c9c1e05).
Without ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA, b.so accesses the copy
relocated data like a.so.
There is now a warning for copy relocation on protected symbol since
commit 7374c02b683b7110b853a32496a619410364d70b. It's extremely
unlikely anyone relies on the ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA
behavior, so let's remove it: this removes a check in the symbol lookup
code.
|
|
|
|
|
|
|
|
| |
Move the setting of `rep_movsb_stop_threshold` to after the tunables
have been collected so that the `rep_movsb_stop_threshold` (which
is used to redirect control flow to the non_temporal case) will
use any user value for `non_temporal_threshold` (set using
glibc.cpu.x86_non_temporal_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unroll slightly and enforce good instruction scheduling. This improves
performance on out-of-order machines. The unrolling allows for
pipelined multiplies.
As well, as an optional sysdep, reorder the operations and prevent
reassosiation for better scheduling and higher ILP. This commit
only adds the barrier for x86, although it should be either no
change or a win for any architecture.
Unrolling further started to induce slowdowns for sizes [0, 4]
but can help the loop so if larger sizes are the target further
unrolling can be beneficial.
Results for _dl_new_hash
Benchmarked on Tigerlake: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
Time as Geometric Mean of N=30 runs
Geometric of all benchmark New / Old: 0.674
type, length, New Time, Old Time, New Time / Old Time
fixed, 0, 2.865, 2.72, 1.053
fixed, 1, 3.567, 2.489, 1.433
fixed, 2, 2.577, 3.649, 0.706
fixed, 3, 3.644, 5.983, 0.609
fixed, 4, 4.211, 6.833, 0.616
fixed, 5, 4.741, 9.372, 0.506
fixed, 6, 5.415, 9.561, 0.566
fixed, 7, 6.649, 10.789, 0.616
fixed, 8, 8.081, 11.808, 0.684
fixed, 9, 8.427, 12.935, 0.651
fixed, 10, 8.673, 14.134, 0.614
fixed, 11, 10.69, 15.408, 0.694
fixed, 12, 10.789, 16.982, 0.635
fixed, 13, 12.169, 18.411, 0.661
fixed, 14, 12.659, 19.914, 0.636
fixed, 15, 13.526, 21.541, 0.628
fixed, 16, 14.211, 23.088, 0.616
fixed, 32, 29.412, 52.722, 0.558
fixed, 64, 65.41, 142.351, 0.459
fixed, 128, 138.505, 295.625, 0.469
fixed, 256, 291.707, 601.983, 0.485
random, 2, 12.698, 12.849, 0.988
random, 4, 16.065, 15.857, 1.013
random, 8, 19.564, 21.105, 0.927
random, 16, 23.919, 26.823, 0.892
random, 32, 31.987, 39.591, 0.808
random, 64, 49.282, 71.487, 0.689
random, 128, 82.23, 145.364, 0.566
random, 256, 152.209, 298.434, 0.51
Co-authored-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PI_STATIC_AND_HIDDEN indicates whether accesses to internal linkage
variables and hidden visibility variables in a shared object (ld.so)
need dynamic relocations (usually R_*_RELATIVE). PI (position
independent) in the macro name is a misnomer: a code sequence using GOT
is typically position-independent as well, but using dynamic relocations
does not meet the requirement.
Not defining PI_STATIC_AND_HIDDEN is legacy and we expect that all new
ports will define PI_STATIC_AND_HIDDEN. Current ports defining
PI_STATIC_AND_HIDDEN are more than the opposite. Change the configure
default.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Overflow case for __wcsncmp_avx2_rtm should be __wcscmp_avx2_rtm not
__wcscmp_avx2.
commit ddf0992cf57a93200e0c782e2a94d0733a5a0b87
Author: Noah Goldstein <goldstein.w.n@gmail.com>
Date: Sun Jan 9 16:02:21 2022 -0600
x86: Fix __wcsncmp_avx2 in strcmp-avx2.S [BZ# 28755]
Set the wrong fallback function for `__wcsncmp_avx2_rtm`. It was set
to fallback on to `__wcscmp_avx2` instead of `__wcscmp_avx2_rtm` which
can cause spurious aborts.
This change will need to be backported.
All string/memory tests pass.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Previously TEST_NAME was passing a function pointer. This didn't fail
because of the -Wno-error flag (to allow for overflow sizes passed
to strncmp/wcsncmp)
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
| |
In the overflow fallback strncmp-avx2-rtm and wcsncmp-avx2-rtm would
call strcmp-avx2 and wcscmp-avx2 respectively. This would have
not checks around vzeroupper and would trigger spurious
aborts. This commit fixes that.
test-strcmp, test-strncmp, test-wcscmp, and test-wcsncmp all pass on
AVX2 machines with and without RTM.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the overflow fallback strncmp-avx2-rtm and wcsncmp-avx2-rtm would
call strcmp-avx2 and wcscmp-avx2 respectively. This would have
not checks around vzeroupper and would trigger spurious
aborts. This commit fixes that.
test-strcmp, test-strncmp, test-wcscmp, and test-wcsncmp all pass on
AVX2 machines with and without RTM.
Co-authored-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
| |
Move PI_STATIC_AND_HIDDEN and SUPPORT_STATIC_PIE to
sysdeps/x86/configure.ac.
|
|
|
|
|
| |
PCONFIG is a privileged instruction. Use CHECK_FEATURE_PRESENT, instead
of CHECK_FEATURE_ACTIVE, on PCONFIG in tst-cpu-features-supports.c.
|
|
|
|
|
| |
Don't check PTWRITE against /proc/cpuinfo since kernel doesn't report
PTWRITE in /proc/cpuinfo.
|
| |
|
|
|
|
|
| |
HLE is disabled on blacklisted CPUs. Use CHECK_FEATURE_PRESENT, instead
of CHECK_FEATURE_ACTIVE, to check HLE.
|
|
|
|
|
|
|
|
|
|
| |
Disable TSX and enable RTM_ALWAYS_ABORT for Intel CPUs listed in:
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
This fixes BZ #27398.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases (e.g QEMU, non-Intel/AMD CPU) the cache information can
not be retrieved and the corresponding values are set to 0.
Commit 2d651eb9265d ("x86: Move x86 processor cache info to
cpu_features") changed the behaviour in such case by defining the
__x86_shared_cache_size and __x86_data_cache_size variables to 0 instead
of using the default values. This cause an issue with the i686 SSE2
optimized bzero/routine which assumes that the cache size is at least
128 bytes, and otherwise tries to zero/set the whole address space minus
128 bytes.
Fix that by restoring the original code to only update
__x86_shared_cache_size and __x86_data_cache_size variables if the
corresponding cache sizes are not zero.
Fixes bug 28784
Fixes commit 2d651eb9265d
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
This ISA level covers the glibc build itself. <dl-hwcap-check.h>
cannot be used because this check (by design) happens before
DL_PLATFORM_INIT and the x86 CPU flags initialization.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
| |
HAVE_X86_LAHF_SAHF is implied by x86-64-v2, and HAVE_X86_MOVBE by
x86-64-v3.
The individual flag does not appear in -fverbose-asm flag output
even if the ISA level implies it.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
|
|
|
|
|
|
|
|
| |
Implement vectorized tan/tanf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector tan/tanf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized erfc/erfcf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector erfc/erfcf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized asinh/asinhf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector asinh/asinhf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized tanh/tanhf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector tanh/tanhf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized erf/erff containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector erf/erff with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized acosh/acoshf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector acosh/acoshf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized atanh/atanhf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector atanh/atanhf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized log1p/log1pf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector log1p/log1pf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized log2/log2f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector log2/log2f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized log10/log10f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector log10/log10f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized atan2/atan2f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector atan2/atan2f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized cbrt/cbrtf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector cbrt/cbrtf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized sinh/sinhf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector sinh/sinhf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized expm1/expm1f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector expm1/expm1f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized cosh/coshf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector cosh/coshf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized exp10/exp10f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector exp10/exp10f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized exp2/exp2f containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector exp2/exp2f with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized hypot/hypotf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector hypot/hypotf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized asin/asinf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector asin/asinf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
| |
Implement vectorized atan/atanf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector atan/atanf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It can be used to speed up the libgcc unwinder, and the internal
_dl_find_dso_for_object function (which is used for caller
identification in dlopen and related functions, and in dladdr).
_dl_find_object is in the internal namespace due to bug 28503.
If libgcc switches to _dl_find_object, this namespace issue will
be fixed. It is located in libc for two reasons: it is necessary
to forward the call to the static libc after static dlopen, and
there is a link ordering issue with -static-libgcc and libgcc_eh.a
because libc.so is not a linker script that includes ld.so in the
glibc build tree (so that GCC's internal -lc after libgcc_eh.a does
not pick up ld.so).
It is necessary to do the i386 customization in the
sysdeps/x86/bits/dl_find_object.h header shared with x86-64 because
otherwise, multilib installations are broken.
The implementation uses software transactional memory, as suggested
by Torvald Riegel. Two copies of the supporting data structures are
used, also achieving full async-signal-safety.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
| |
Now that memusage.c uses generic types we can remove them.
|
|
|
|
|
|
|
|
| |
Implement vectorized acos/acosf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI. It also contains
accuracy and ABI tests for vector acos/acosf with regenerated ulps.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
|
|
|
|
|
|
|
|
|
| |
On KVM guests running on some AMD systems, the IBRS feature is reported
as a synthetic feature using the Intel feature, while the cpuinfo entry
keeps the same. Handle that by first checking the presence of the Intel
feature on AMD systems.
Fixes bug 28704.
|