about summary refs log tree commit diff
path: root/sysdeps/x86/cpu-features.c
Commit message (Collapse)AuthorAgeFilesLines
* x86: Add Hygon Dhyana support.Carlos O'Donell2018-12-131-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch fix Hygon Dhyana processor CPU Vendor ID detection problem in glibc sysdep module, current glibc codes doesn't recognize Dhyana CPU Vendor ID("HygonGenuine") and set kind to arch_kind_other, which result to incorrect zero value for __cache_sysconf() syscall. As Hygon Dhyana share most architecture feature as AMD Family 17h, this patch add Hygon CPU Vendor ID check and setup kind to arch_kind_amd and reuse AMD code path, which lead to correct return value in __cache_sysconf() syscall. we run the glibc test suite for both Hygon Dhyana and AMD EPYC and found no failure case. Background: Chengdu Haiguang IC Design Co., Ltd (Hygon) is a Joint Venture between AMD and Haiguang Information Technology Co.,Ltd., aims at providing high performance x86 processor for China server market. Its first generation processor codename is Dhyana, which originates from AMD technology and shares most of the architecture with AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series number(Family 18h). Related Hygon kernel patch can be found on http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn Signed-off-by: fanjinke <fanjinke@hygon.cn> Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* x86: Extend CPUID support in struct cpu_featuresH.J. Lu2018-12-031-34/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Extend CPUID support for all feature bits from CPUID. Add a new macro, CPU_FEATURE_USABLE, which can be used to check if a feature is usable at run-time, instead of HAS_CPU_FEATURE and HAS_ARCH_FEATURE. Add COMMON_CPUID_INDEX_D_ECX_1, COMMON_CPUID_INDEX_80000007 and COMMON_CPUID_INDEX_80000008 to check CPU feature bits in them. Tested on i686 and x86-64 as well as using build-many-glibcs.py with x86 targets. * sysdeps/x86/cacheinfo.c (intel_check_word): Updated for cpu_features_basic. (__cache_sysconf): Likewise. (init_cacheinfo): Likewise. * sysdeps/x86/cpu-features.c (get_extended_indeces): Also populate COMMON_CPUID_INDEX_80000007 and COMMON_CPUID_INDEX_80000008. (get_common_indices): Also populate COMMON_CPUID_INDEX_D_ECX_1. Use CPU_FEATURES_CPU_P (cpu_features, XSAVEC) to check if XSAVEC is available. Set the bit_arch_XXX_Usable bits. (init_cpu_features): Use _Static_assert on index_arch_Fast_Unaligned_Load. __get_cpuid_registers and __get_arch_feature. Updated for cpu_features_basic. Set stepping in cpu_features. * sysdeps/x86/cpu-features.h: (FEATURE_INDEX_1): Changed to enum. (FEATURE_INDEX_2): New. (FEATURE_INDEX_MAX): Changed to enum. (COMMON_CPUID_INDEX_D_ECX_1): New. (COMMON_CPUID_INDEX_80000007): Likewise. (COMMON_CPUID_INDEX_80000008): Likewise. (cpuid_registers): Likewise. (cpu_features_basic): Likewise. (CPU_FEATURE_USABLE): Likewise. (bit_arch_XXX_Usable): Likewise. (cpu_features): Use cpuid_registers and cpu_features_basic. (bit_arch_XXX): Reweritten. (bit_cpu_XXX): Likewise. (index_cpu_XXX): Likewise. (reg_XXX): Likewise. * sysdeps/x86/tst-get-cpu-features.c: Include <stdio.h> and <support/check.h>. (CHECK_CPU_FEATURE): New. (CHECK_CPU_FEATURE_USABLE): Likewise. (cpu_kinds): Likewise. (do_test): Print vendor, family, model and stepping. Check HAS_CPU_FEATURE and CPU_FEATURE_USABLE. (TEST_FUNCTION): Removed. Include <support/test-driver.c> instead of "../../test-skeleton.c". * sysdeps/x86_64/multiarch/sched_cpucount.c (__sched_cpucount): Check POPCNT instead of POPCOUNT. * sysdeps/x86_64/multiarch/test-multiarch.c (do_test): Likewise.
* x86: Fix Haswell strong flags (BZ#23709)Adhemerval Zanella2018-10-231-0/+6
| | | | | | | | | | | | | | | | | | | Th commit 'Disable TSX on some Haswell processors.' (2702856bf4) changed the default flags for Haswell models. Previously, new models were handled by the default switch path, which assumed a Core i3/i5/i7 if AVX is available. After the patch, Haswell models (0x3f, 0x3c, 0x45, 0x46) do not set the flags Fast_Rep_String, Fast_Unaligned_Load, Fast_Unaligned_Copy, and Prefer_PMINUB_for_stringop (only the TSX one). This patch fixes it by disentangle the TSX flag handling from the memory optimization ones. The strstr case cited on patch now selects the __strstr_sse2_unaligned as expected for the Haswell cpu. Checked on x86_64-linux-gnu. [BZ #23709] * sysdeps/x86/cpu-features.c (init_cpu_features): Set TSX bits independently of other flags.
* Rename the glibc.tune namespace to glibc.cpuSiddhesh Poyarekar2018-08-021-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The glibc.tune namespace is vaguely named since it is a 'tunable', so give it a more specific name that describes what it refers to. Rename the tunable namespace to 'cpu' to more accurately reflect what it encompasses. Also rename glibc.tune.cpu to glibc.cpu.name since glibc.cpu.cpu is weird. * NEWS: Mention the change. * elf/dl-tunables.list: Rename tune namespace to cpu. * sysdeps/powerpc/dl-tunables.list: Likewise. * sysdeps/x86/dl-tunables.list: Likewise. * sysdeps/aarch64/dl-tunables.list: Rename tune.cpu to cpu.name. * elf/dl-hwcaps.c (_dl_important_hwcaps): Adjust. * elf/dl-hwcaps.h (GET_HWCAP_MASK): Likewise. * manual/README.tunables: Likewise. * manual/tunables.texi: Likewise. * sysdeps/powerpc/cpu-features.c: Likewise. * sysdeps/unix/sysv/linux/aarch64/cpu-features.c (init_cpu_features): Likewise. * sysdeps/x86/cpu-features.c: Likewise. * sysdeps/x86/cpu-features.h: Likewise. * sysdeps/x86/cpu-tunables.c: Likewise. * sysdeps/x86_64/Makefile: Likewise. * sysdeps/x86/dl-cet.c: Likewise. Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* x86: Rename get_common_indeces to get_common_indicesH.J. Lu2018-08-011-4/+4
| | | | | | | | | Reviewed-by: Carlos O'Donell <carlos@redhat.com> * sysdeps/x86/cpu-features.c (get_common_indeces): Renamed to ... (get_common_indices): This. (init_cpu_features): Updated.
* x86: Populate COMMON_CPUID_INDEX_80000001 for Intel CPUs [BZ #23459]H.J. Lu2018-07-261-9/+18
| | | | | | | | | | | | Reviewed-by: Carlos O'Donell <carlos@redhat.com> [BZ #23459] * sysdeps/x86/cpu-features.c (get_extended_indices): New function. (init_cpu_features): Call get_extended_indices for both Intel and AMD CPUs. * sysdeps/x86/cpu-features.h (COMMON_CPUID_INDEX_80000001): Remove "for AMD" comment.
* x86: Always include <dl-cet.h>/cet-tunables.h> for --enable-cetH.J. Lu2018-07-171-2/+5
| | | | | | | | | Always include <dl-cet.h> and cet-tunables.h> when CET is enabled. Otherwise, configure glibc with --enable-cet --disable-tunables will fail to build. * sysdeps/x86/cpu-features.c: Always include <dl-cet.h> and cet-tunables.h> when CET is enabled.
* x86: Support IBT and SHSTK in Intel CET [BZ #21598]H.J. Lu2018-07-161-0/+60
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Intel Control-flow Enforcement Technology (CET) instructions: https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en forcement-technology-preview.pdf includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK). GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to indicate that all executable sections are compatible with IBT when ENDBR instruction starts each valid target where an indirect branch instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on output only if it is set on all relocatable inputs. On an IBT capable processor, the following steps should be taken: 1. When loading an executable without an interpreter, enable IBT and lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable. 2. When loading an executable with an interpreter, enable IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter. a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable, disable IBT. b. Lock IBT. 3. If IBT is enabled, when loading a shared object without GNU_PROPERTY_X86_FEATURE_1_IBT: a. If legacy interwork is allowed, then mark all pages in executable PT_LOAD segments in legacy code page bitmap. Failure of legacy code page bitmap allocation causes an error. b. If legacy interwork isn't allowed, it causes an error. GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to indicate that all executable sections are compatible with SHSTK where return address popped from shadow stack always matches return address popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK on output only if it is set on all relocatable inputs. On a SHSTK capable processor, the following steps should be taken: 1. When loading an executable without an interpreter, enable SHSTK if GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable. 2. When loading an executable with an interpreter, enable SHSTK if GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter. a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable or any shared objects loaded via the DT_NEEDED tag, disable SHSTK. b. Otherwise lock SHSTK. 3. After SHSTK is enabled, it is an error to load a shared object without GNU_PROPERTY_X86_FEATURE_1_SHSTK. To enable CET support in glibc, --enable-cet is required to configure glibc. When CET is enabled, both compiler and assembler must support CET. Otherwise, it is a configure-time error. To support CET run-time control, 1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate if IBT or SHSTK are enabled at run-time. It should be initialized by init_cpu_features. 2. For dynamic executables: a. A l_cet field is added to struct link_map to indicate if IBT or SHSTK is enabled in an ELF module. _dl_process_pt_note or _rtld_process_pt_note is called to process PT_NOTE segment for GNU program property and set l_cet. b. _dl_open_check is added to check IBT and SHSTK compatibilty when dlopening a shared object. 3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with _dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if SHSTK is enabled. CET run-time control can be changed via GLIBC_TUNABLES with $ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off] $ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off] 1. permissive: SHSTK is disabled when dlopening a legacy ELF module. 2. on: IBT or SHSTK are always enabled, regardless if there are IBT or SHSTK bits in GNU program property. 3. off: IBT or SHSTK are always disabled, regardless if there are IBT or SHSTK bits in GNU program property. <cet.h> from CET-enabled GCC is automatically included by assembly codes to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK to GNU program property. _CET_ENDBR is added at the entrance of all assembly functions whose address may be taken. _CET_NOTRACK is used to insert NOTRACK prefix with indirect jump table to support IBT. It is defined as notrack when _CET_NOTRACK is defined in <cet.h>. [BZ #21598] * configure.ac: Add --enable-cet. * configure: Regenerated. * elf/Makefille (all-built-dso): Add a comment. * elf/dl-load.c (filebuf): Moved before "dynamic-link.h". Include <dl-prop.h>. (_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE segment. * elf/dl-open.c: Include <dl-prop.h>. (dl_open_worker): Call _dl_open_check. * elf/rtld.c: Include <dl-prop.h>. (dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call _rtld_main_check. * sysdeps/generic/dl-prop.h: New file. * sysdeps/i386/dl-cet.c: Likewise. * sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise. * sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise. * sysdeps/x86/cet-tunables.h: Likewise. * sysdeps/x86/check-cet.awk: Likewise. * sysdeps/x86/configure: Likewise. * sysdeps/x86/configure.ac: Likewise. * sysdeps/x86/dl-cet.c: Likewise. * sysdeps/x86/dl-procruntime.c: Likewise. * sysdeps/x86/dl-prop.h: Likewise. * sysdeps/x86/libc-start.h: Likewise. * sysdeps/x86/link_map.h: Likewise. * sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add _CET_ENDBR. (_dl_runtime_profile): Likewise. (_dl_runtime_resolve_shstk): New. (_dl_runtime_profile_shstk): Likewise. * sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet if CET is enabled. (CFLAGS-.o): Add -fcf-protection if CET is enabled. (CFLAGS-.os): Likewise. (CFLAGS-.op): Likewise. (CFLAGS-.oS): Likewise. (asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET is enabled. (tests-special): Add $(objpfx)check-cet.out. (cet-built-dso): New. (+$(cet-built-dso:=.note)): Likewise. (common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note). ($(objpfx)check-cet.out): New. (generated): Add check-cet.out. * sysdeps/x86/cpu-features.c: Include <dl-cet.h> and <cet-tunables.h>. (TUNABLE_CALLBACK (set_x86_ibt)): New prototype. (TUNABLE_CALLBACK (set_x86_shstk)): Likewise. (init_cpu_features): Call get_cet_status to check CET status and update dl_x86_feature_1 with CET status. Call TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK (set_x86_shstk). Disable and lock CET in libc.a. * sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>. (TUNABLE_CALLBACK (set_x86_ibt)): New function. (TUNABLE_CALLBACK (set_x86_shstk)): Likewise. * sysdeps/x86/sysdep.h (_CET_NOTRACK): New. (_CET_ENDBR): Define if not defined. (ENTRY): Add _CET_ENDBR. * sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and x86_shstk. * sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add _CET_ENDBR. (_dl_runtime_profile): Likewise.
* Use AVX_Fast_Unaligned_Load from Zen onwards.Amit Pawar2018-07-061-5/+13
| | | | | | | From Zen onwards this will be enabled. It was disabled for the Excavator case and will remain disabled. Reviewd-by: Carlos O'Donell <carlos@redhat.com>
* Update copyright dates with scripts/update-copyrights.Joseph Myers2018-01-011-1/+1
| | | | | | | * All files with FSF copyright notices: Update copyright dates using scripts/update-copyrights. * locale/programs/charmap-kw.h: Regenerated. * locale/programs/locfile-kw.h: Likewise.
* x86-64: Use fxsave/xsave/xsavec in _dl_runtime_resolve [BZ #21265]H.J. Lu2017-10-201-17/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In _dl_runtime_resolve, use fxsave/xsave/xsavec to preserve all vector, mask and bound registers. It simplifies _dl_runtime_resolve and supports different calling conventions. ld.so code size is reduced by more than 1 KB. However, use fxsave/xsave/xsavec takes a little bit more cycles than saving and restoring vector and bound registers individually. Latency for _dl_runtime_resolve to lookup the function, foo, from one shared library plus libc.so: Before After Change Westmere (SSE)/fxsave 345 866 151% IvyBridge (AVX)/xsave 420 643 53% Haswell (AVX)/xsave 713 1252 75% Skylake (AVX+MPX)/xsavec 559 719 28% Skylake (AVX512+MPX)/xsavec 145 272 87% Ryzen (AVX)/xsavec 280 553 97% This is the worst case where portion of time spent for saving and restoring registers is bigger than majority of cases. With smaller _dl_runtime_resolve code size, overall performance impact is negligible. On IvyBridge, differences in build and test time of binutils with lazy binding GCC and binutils are noises. On Westmere, differences in bootstrap and "makc check" time of GCC 7 with lazy binding GCC and binutils are also noises. [BZ #21265] * sysdeps/x86/cpu-features-offsets.sym (XSAVE_STATE_SIZE_OFFSET): New. * sysdeps/x86/cpu-features.c: Include <libc-pointer-arith.h>. (get_common_indeces): Set xsave_state_size, xsave_state_full_size and bit_arch_XSAVEC_Usable if needed. (init_cpu_features): Remove bit_arch_Use_dl_runtime_resolve_slow and bit_arch_Use_dl_runtime_resolve_opt. * sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt): Removed. (bit_arch_Use_dl_runtime_resolve_slow): Likewise. (bit_arch_Prefer_No_AVX512): Updated. (bit_arch_MathVec_Prefer_No_AVX512): Likewise. (bit_arch_XSAVEC_Usable): New. (STATE_SAVE_OFFSET): Likewise. (STATE_SAVE_MASK): Likewise. [__ASSEMBLER__]: Include <cpu-features-offsets.h>. (cpu_features): Add xsave_state_size and xsave_state_full_size. (index_arch_Use_dl_runtime_resolve_opt): Removed. (index_arch_Use_dl_runtime_resolve_slow): Likewise. (index_arch_XSAVEC_Usable): New. * sysdeps/x86/cpu-tunables.c (TUNABLE_CALLBACK (set_hwcaps)): Support XSAVEC_Usable. Remove Use_dl_runtime_resolve_slow. * sysdeps/x86_64/Makefile (tst-x86_64-1-ENV): New if tunables is enabled. * sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Replace _dl_runtime_resolve_sse, _dl_runtime_resolve_avx, _dl_runtime_resolve_avx_slow, _dl_runtime_resolve_avx_opt, _dl_runtime_resolve_avx512 and _dl_runtime_resolve_avx512_opt with _dl_runtime_resolve_fxsave, _dl_runtime_resolve_xsave and _dl_runtime_resolve_xsavec. * sysdeps/x86_64/dl-trampoline.S (DL_RUNTIME_UNALIGNED_VEC_SIZE): Removed. (DL_RUNTIME_RESOLVE_REALIGN_STACK): Check STATE_SAVE_ALIGNMENT instead of VEC_SIZE. (REGISTER_SAVE_BND0): Removed. (REGISTER_SAVE_BND1): Likewise. (REGISTER_SAVE_BND3): Likewise. (REGISTER_SAVE_RAX): Always defined to 0. (VMOV): Removed. (_dl_runtime_resolve_avx): Likewise. (_dl_runtime_resolve_avx_slow): Likewise. (_dl_runtime_resolve_avx_opt): Likewise. (_dl_runtime_resolve_avx512): Likewise. (_dl_runtime_resolve_avx512_opt): Likewise. (_dl_runtime_resolve_sse): Likewise. (_dl_runtime_resolve_sse_vex): Likewise. (USE_FXSAVE): New. (_dl_runtime_resolve_fxsave): Likewise. (USE_XSAVE): Likewise. (_dl_runtime_resolve_xsave): Likewise. (USE_XSAVEC): Likewise. (_dl_runtime_resolve_xsavec): Likewise. * sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx512): Removed. (_dl_runtime_resolve_avx512_opt): Likewise. (_dl_runtime_resolve_avx): Likewise. (_dl_runtime_resolve_avx_opt): Likewise. (_dl_runtime_resolve_sse): Likewise. (_dl_runtime_resolve_sse_vex): Likewise. (_dl_runtime_resolve_fxsave): New. (_dl_runtime_resolve_xsave): Likewise. (_dl_runtime_resolve_xsavec): Likewise.
* x86-64: Don't set GLRO(dl_platform) to NULL [BZ #22299]H.J. Lu2017-10-191-4/+8
| | | | | | | | | | | | | | | | | | | | | | | Since ld.so expands $PLATFORM with GLRO(dl_platform), don't set GLRO(dl_platform) to NULL. [BZ #22299] * sysdeps/x86/cpu-features.c (init_cpu_features): Don't set GLRO(dl_platform) to NULL. * sysdeps/x86_64/Makefile (tests): Add tst-platform-1. (modules-names): Add tst-platformmod-1 and x86_64/tst-platformmod-2. (CFLAGS-tst-platform-1.c): New. (CFLAGS-tst-platformmod-1.c): Likewise. (CFLAGS-tst-platformmod-2.c): Likewise. (LDFLAGS-tst-platformmod-2.so): Likewise. ($(objpfx)tst-platform-1): Likewise. ($(objpfx)tst-platform-1.out): Likewise. (tst-platform-1-ENV): Likewise. ($(objpfx)x86_64/tst-platformmod-2.os): Likewise. * sysdeps/x86_64/tst-platform-1.c: New file. * sysdeps/x86_64/tst-platformmod-1.c: Likewise. * sysdeps/x86_64/tst-platformmod-2.c: Likewise.
* x86: Add x86_64 to x86-64 HWCAP [BZ #22093]H.J. Lu2017-09-111-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before glibc 2.26, ld.so set dl_platform to "x86_64" and searched the "x86_64" subdirectory when loading a shared library. ld.so in glibc 2.26 was changed to set dl_platform to "haswell" or "xeon_phi", based on supported ISAs. This led to shared library loading failure for shared libraries placed under the "x86_64" subdirectory. This patch adds "x86_64" to x86-64 dl_hwcap so that ld.so will always search the "x86_64" subdirectory when loading a shared library. NB: We can't set x86-64 dl_platform to "x86-64" since ld.so will skip the "haswell" and "xeon_phi" subdirectories on "haswell" and "xeon_phi" machines. Tested on i686 and x86-64. [BZ #22093] * sysdeps/x86/cpu-features.c (init_cpu_features): Initialize GLRO(dl_hwcap) to HWCAP_X86_64 for x86-64. * sysdeps/x86/dl-hwcap.h (HWCAP_COUNT): Updated. (HWCAP_IMPORTANT): Likewise. (HWCAP_X86_64): New enum. (HWCAP_X86_AVX512_1): Updated. * sysdeps/x86/dl-procinfo.c (_dl_x86_hwcap_flags): Add "x86_64". * sysdeps/x86_64/Makefile (tests): Add tst-x86_64-1. (modules-names): Add x86_64/tst-x86_64mod-1. (LDFLAGS-tst-x86_64mod-1.so): New. ($(objpfx)tst-x86_64-1): Likewise. ($(objpfx)x86_64/tst-x86_64mod-1.os): Likewise. (tst-x86_64-1-clean): Likewise. * sysdeps/x86_64/tst-x86_64-1.c: New file. * sysdeps/x86_64/tst-x86_64mod-1.c: Likewise.
* x86-64: Use _dl_runtime_resolve_opt only with AVX512F [BZ #21871]H.J. Lu2017-08-041-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On AVX machines with XGETBV (ECX == 1) like Skylake processors, (gdb) disass _dl_runtime_resolve_avx_opt Dump of assembler code for function _dl_runtime_resolve_avx_opt: 0x0000000000015890 <+0>: push %rax 0x0000000000015891 <+1>: push %rcx 0x0000000000015892 <+2>: push %rdx 0x0000000000015893 <+3>: mov $0x1,%ecx 0x0000000000015898 <+8>: xgetbv 0x000000000001589b <+11>: mov %eax,%r11d 0x000000000001589e <+14>: pop %rdx 0x000000000001589f <+15>: pop %rcx 0x00000000000158a0 <+16>: pop %rax 0x00000000000158a1 <+17>: and $0x4,%r11d 0x00000000000158a5 <+21>: bnd je 0x16200 <_dl_runtime_resolve_sse_vex> End of assembler dump. is slower than: (gdb) disass _dl_runtime_resolve_avx_slow Dump of assembler code for function _dl_runtime_resolve_avx_slow: 0x0000000000015850 <+0>: vorpd %ymm0,%ymm1,%ymm8 0x0000000000015854 <+4>: vorpd %ymm2,%ymm3,%ymm9 0x0000000000015858 <+8>: vorpd %ymm4,%ymm5,%ymm10 0x000000000001585c <+12>: vorpd %ymm6,%ymm7,%ymm11 0x0000000000015860 <+16>: vorpd %ymm8,%ymm9,%ymm9 0x0000000000015865 <+21>: vorpd %ymm10,%ymm11,%ymm10 0x000000000001586a <+26>: vpcmpeqd %xmm8,%xmm8,%xmm8 0x000000000001586f <+31>: vorpd %ymm9,%ymm10,%ymm10 0x0000000000015874 <+36>: vptest %ymm10,%ymm8 0x0000000000015879 <+41>: bnd jae 0x158b0 <_dl_runtime_resolve_avx> 0x000000000001587c <+44>: vzeroupper 0x000000000001587f <+47>: bnd jmpq 0x16200 <_dl_runtime_resolve_sse_vex> End of assembler dump. (gdb) since xgetbv takes much more cycles than single cycle operations like vpord/vvpcmpeq/ptest. _dl_runtime_resolve_opt should be used only with AVX512 where AVX512 instructions lead to lower CPU frequency on Skylake server. [BZ #21871] * sysdeps/x86/cpu-features.c (init_cpu_features): Set bit_arch_Use_dl_runtime_resolve_opt only with AVX512F.
* x86: Rename glibc.tune.ifunc to glibc.tune.hwcapsH.J. Lu2017-06-211-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | Rename glibc.tune.ifunc to glibc.tune.hwcaps and move it to sysdeps/x86/dl-tunables.list since it is x86 specicifc. Also change type of data_cache_size, data_cache_size and non_temporal_threshold to unsigned long int to match size_t. Remove usage DEFAULT_STRLEN from cpu-tunables.c. * elf/dl-tunables.list (glibc.tune.ifunc): Removed. * sysdeps/x86/dl-tunables.list (glibc.tune.hwcaps): New. Remove security_level on all fields. * manual/tunables.texi: Replace ifunc with hwcaps. * sysdeps/x86/cpu-features.c (TUNABLE_CALLBACK (set_ifunc)): Renamed to .. (TUNABLE_CALLBACK (set_hwcaps)): This. (init_cpu_features): Updated. * sysdeps/x86/cpu-features.h (cpu_features): Change type of data_cache_size, data_cache_size and non_temporal_threshold to unsigned long int. * sysdeps/x86/cpu-tunables.c (DEFAULT_STRLEN): Removed. (TUNABLE_CALLBACK (set_ifunc)): Renamed to ... (TUNABLE_CALLBACK (set_hwcaps)): This. Update comments. Don't use DEFAULT_STRLEN.
* tunables: Add IFUNC selection and cache sizesH.J. Lu2017-06-201-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current IFUNC selection is based on microbenchmarks in glibc. It should give the best performance for most workloads. But other choices may have better performance for a particular workload or on the hardware which wasn't available at the selection was made. The environment variable, GLIBC_TUNABLES=glibc.tune.ifunc=-xxx,yyy,-zzz...., can be used to enable CPU/ARCH feature yyy, disable CPU/ARCH feature yyy and zzz, where the feature name is case-sensitive and has to match the ones in cpu-features.h. It can be used by glibc developers to override the IFUNC selection to tune for a new processor or improve performance for a particular workload. It isn't intended for normal end users. NOTE: the IFUNC selection may change over time. Please check all multiarch implementations when experimenting. Also, GLIBC_TUNABLES=glibc.tune.x86_non_temporal_threshold=NUMBER is provided to set threshold to use non temporal store to NUMBER, GLIBC_TUNABLES=glibc.tune.x86_data_cache_size=NUMBER to set data cache size, GLIBC_TUNABLES=glibc.tune.x86_shared_cache_size=NUMBER to set shared cache size. * elf/dl-tunables.list (tune): Add ifunc, x86_non_temporal_threshold, x86_data_cache_size and x86_shared_cache_size. * manual/tunables.texi: Document glibc.tune.ifunc, glibc.tune.x86_data_cache_size, glibc.tune.x86_shared_cache_size and glibc.tune.x86_non_temporal_threshold. * sysdeps/unix/sysv/linux/x86/dl-sysdep.c: New file. * sysdeps/x86/cpu-tunables.c: Likewise. * sysdeps/x86/cacheinfo.c (init_cacheinfo): Check and get data cache size, shared cache size and non temporal threshold from cpu_features. * sysdeps/x86/cpu-features.c [HAVE_TUNABLES] (TUNABLE_NAMESPACE): New. [HAVE_TUNABLES] Include <unistd.h>. [HAVE_TUNABLES] Include <elf/dl-tunables.h>. [HAVE_TUNABLES] (TUNABLE_CALLBACK (set_ifunc)): Likewise. [HAVE_TUNABLES] (init_cpu_features): Use TUNABLE_GET to set IFUNC selection, data cache size, shared cache size and non temporal threshold. * sysdeps/x86/cpu-features.h (cpu_features): Add data_cache_size, shared_cache_size and non_temporal_threshold.
* Make LD_HWCAP_MASK usable for static binariesSiddhesh Poyarekar2017-06-071-5/+3
| | | | | | | | | | | | | | | | | | The LD_HWCAP_MASK environment variable was ignored in static binaries, which is inconsistent with the behaviour of dynamically linked binaries. This seems to have been because of the inability of ld_hwcap_mask being read early enough to influence anything but now that it is in tunables, the mask is usable in static binaries as well. This feature is important for aarch64, which relies on HWCAP_CPUID being masked out to disable multiarch. A sanity test on x86_64 shows that there are no failures. Likewise for aarch64. * elf/dl-hwcaps.h [HAVE_TUNABLES]: Always read hwcap_mask. * sysdeps/sparc/sparc32/dl-machine.h [HAVE_TUNABLES]: Likewise. * sysdeps/x86/cpu-features.c (init_cpu_features): Always set up hwcap and hwcap_mask.
* tunables: Use glibc.tune.hwcap_mask tunable instead of _dl_hwcap_maskSiddhesh Poyarekar2017-06-071-0/+4
| | | | | | | | | | | | | | | | | | | | | | | Drop _dl_hwcap_mask when building with tunables. This completes the transition of hwcap_mask reading from _dl_hwcap_mask to tunables. * elf/dl-hwcaps.h: New file. * elf/dl-hwcaps.c: Include it. (_dl_important_hwcaps)[HAVE_TUNABLES]: Read and update glibc.tune.hwcap_mask. * elf/dl-cache.c: Include dl-hwcaps.h. (_dl_load_cache_lookup)[HAVE_TUNABLES]: Read glibc.tune.hwcap_mask. * sysdeps/sparc/sparc32/dl-machine.h: Likewise. * elf/dl-support.c (_dl_hwcap2)[HAVE_TUNABLES]: Drop _dl_hwcap_mask. * elf/rtld.c (rtld_global_ro)[HAVE_TUNABLES]: Drop _dl_hwcap_mask. (process_envvars)[HAVE_TUNABLES]: Likewise. * sysdeps/generic/ldsodefs.h (rtld_global_ro)[HAVE_TUNABLES]: Likewise. * sysdeps/x86/cpu-features.c (init_cpu_features): Don't initialize dl_hwcap_mask when tunables are enabled.
* x86: Set dl_platform and dl_hwcap from CPU features [BZ #21391]H.J. Lu2017-05-031-0/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dl_platform and dl_hwcap are set from AT_PLATFORM and AT_HWCAP very early during startup. They are used by dynamic linker to determine platform and build an array of hardware capability names, which are added to search path when loading shared object. dl_platform and dl_hwcap are unused on x86-64. On i386, i386, i486, i586 and i686 platforms were supported and only SSE2 capability was used. On x86, usage of AT_PLATFORM and AT_HWCAP to determine platform and processor capabilities is obsolete since all information is available in dl_x86_cpu_features. This patch sets dl_platform and dl_hwcap from dl_x86_cpu_features in dynamic linker. On i386, the available plaforms are changed to i586 and i686 since i386 has been deprecated. On x86-64, the available plaforms are haswell, which is for Haswell class processors with BMI1, BMI2, LZCNT, MOVBE, POPCNT, AVX2 and FMA, and xeon_phi, which is for Xeon Phi class processors with AVX512F, AVX512CD, AVX512ER and AVX512PF. A capability, avx512_1, is also added to x86-64 for AVX512 ISAs: AVX512F, AVX512CD, AVX512BW, AVX512DQ and AVX512VL. [BZ #21391] * sysdeps/i386/dl-machine.h (dl_platform_init) [IS_IN (rtld)]: Only call init_cpu_features. [!IS_IN (rtld)]: Only set GLRO(dl_platform) to NULL if needed. * sysdeps/x86_64/dl-machine.h (dl_platform_init): Likewise. * sysdeps/i386/dl-procinfo.h: Removed. * sysdeps/unix/sysv/linux/i386/dl-procinfo.h: Don't include <sysdeps/i386/dl-procinfo.h> nor <ldsodefs.h>. Include <sysdeps/x86/dl-procinfo.h>. (_dl_procinfo): Replace _DL_HWCAP_COUNT with 32. * sysdeps/unix/sysv/linux/x86_64/dl-procinfo.h [!IS_IN (ldconfig)]: Include <sysdeps/x86/dl-procinfo.h> instead of <sysdeps/generic/dl-procinfo.h>. * sysdeps/x86/cpu-features.c: Include <dl-hwcap.h>. (init_cpu_features): Set dl_platform, dl_hwcap and dl_hwcap_mask. * sysdeps/x86/cpu-features.h (bit_cpu_LZCNT): New. (bit_cpu_MOVBE): Likewise. (bit_cpu_BMI1): Likewise. (bit_cpu_BMI2): Likewise. (index_cpu_BMI1): Likewise. (index_cpu_BMI2): Likewise. (index_cpu_LZCNT): Likewise. (index_cpu_MOVBE): Likewise. (index_cpu_POPCNT): Likewise. (reg_BMI1): Likewise. (reg_BMI2): Likewise. (reg_LZCNT): Likewise. (reg_MOVBE): Likewise. (reg_POPCNT): Likewise. * sysdeps/x86/dl-hwcap.h: New file. * sysdeps/x86/dl-procinfo.h: Likewise. * sysdeps/x86/dl-procinfo.c (_dl_x86_hwcap_flags): New. (_dl_x86_platforms): Likewise.
* x86: Use AVX2 memcpy/memset on Skylake server [BZ #21396]H.J. Lu2017-04-181-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On Skylake server, AVX512 load/store instructions in memcpy/memset may lead to lower CPU turbo frequency in certain situations. Use of AVX2 in memcpy/memset has been observed to have improved overall performance in many workloads due to the higher frequency. Since AVX512ER is unique to Xeon Phi, this patch sets Prefer_No_AVX512 if AVX512ER isn't available so that AVX2 versions of memcpy/memset are used on Skylake server. [BZ #21396] * sysdeps/x86/cpu-features.c (init_cpu_features): Set Prefer_No_AVX512 if AVX512ER isn't available. * sysdeps/x86/cpu-features.h (bit_arch_Prefer_No_AVX512): New. (index_arch_Prefer_No_AVX512): Likewise. * sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Don't use AVX512 version if Prefer_No_AVX512 is set. * sysdeps/x86_64/multiarch/memcpy_chk.S (__memcpy_chk): Likewise. * sysdeps/x86_64/multiarch/memmove.S (__libc_memmove): Likewise. * sysdeps/x86_64/multiarch/memmove_chk.S (__memmove_chk): Likewise. * sysdeps/x86_64/multiarch/mempcpy.S (__mempcpy): Likewise. * sysdeps/x86_64/multiarch/mempcpy_chk.S (__mempcpy_chk): Likewise. * sysdeps/x86_64/multiarch/memset.S (memset): Likewise. * sysdeps/x86_64/multiarch/memset_chk.S (__memset_chk): Likewise.
* x86: Set Prefer_No_VZEROUPPER if AVX512ER is availableH.J. Lu2017-04-181-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | AVX512ER won't be implemented in any Xeon processors and will be in all Xeon Phi processors. Don't check CPU model number when setting Prefer_No_VZEROUPPER for Xeon Phi. Instead, set Prefer_No_VZEROUPPER if AVX512ER is available. It works with current and future Xeon Phi and non-Xeon Phi processors. * sysdeps/x86/cpu-features.c (init_cpu_features): Set Prefer_No_VZEROUPPER if AVX512ER is available. * sysdeps/x86/cpu-features.h (bit_cpu_AVX512PF): New. (bit_cpu_AVX512ER): Likewise. (bit_cpu_AVX512CD): Likewise. (bit_cpu_AVX512BW): Likewise. (bit_cpu_AVX512VL): Likewise. (index_cpu_AVX512PF): Likewise. (index_cpu_AVX512ER): Likewise. (index_cpu_AVX512CD): Likewise. (index_cpu_AVX512BW): Likewise. (index_cpu_AVX512VL): Likewise. (reg_AVX512PF): Likewise. (reg_AVX512ER): Likewise. (reg_AVX512CD): Likewise. (reg_AVX512BW): Likewise. (reg_AVX512VL): Likewise.
* Use CPU_FEATURES_CPU_P to check if AVX is availableH.J. Lu2017-03-171-2/+1
| | | | | | | Don't use bit_cpu_AVX directly. * sysdeps/x86/cpu-features.c (init_cpu_features): Check AVX with CPU_FEATURES_CPU_P.
* Use index_cpu_RTM and reg_RTM to clear the bit_cpu_RTM bitH.J. Lu2017-02-171-1/+1
| | | | | * sysdeps/x86/cpu-features.c (init_cpu_features): Use index_cpu_RTM and reg_RTM to clear the bit_cpu_RTM bit.
* Update copyright dates with scripts/update-copyrights.Joseph Myers2017-01-011-1/+1
|
* Disable TSX on some Haswell processors.Andrew Senkevich2016-12-191-6/+23
| | | | | | | | | | Patch disables Intel TSX on some Haswell processors to avoid TSX on kernels that weren't updated with the latest microcode package (which disables broken feature by default). * sysdeps/x86/cpu-features.c (get_common_indeces): Add stepping identification. (init_cpu_features): Add handle of Haswell.
* Bug 20689: Fix FMA and AVX2 detection on IntelCarlos O'Donell2016-10-171-10/+14
| | | | | | | | | | | | | | | | | | | | In the Intel Architecture Instruction Set Extensions Programming reference the recommended way to test for FMA in section '2.2.1 Detection of FMA' is: "Application Software must identify that hardware supports AVX as explained in ... after that it must also detect support for FMA..." We don't do that in glibc. We use osxsave to detect the use of xgetbv, and after that we check for AVX and FMA orthogonally. It is conceivable that you could have the AVX bit clear and the FMA bit in an undefined state. This commit fixes FMA and AVX2 detection to depend on usable AVX as required by the recommended Intel sequences. v1: https://www.sourceware.org/ml/libc-alpha/2016-10/msg00241.html v2: https://www.sourceware.org/ml/libc-alpha/2016-10/msg00265.html
* X86-64: Add _dl_runtime_resolve_avx[512]_{opt|slow} [BZ #20508]H.J. Lu2016-09-061-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is transition penalty when SSE instructions are mixed with 256-bit AVX or 512-bit AVX512 load instructions. Since _dl_runtime_resolve_avx and _dl_runtime_profile_avx512 save/restore 256-bit YMM/512-bit ZMM registers, there is transition penalty when SSE instructions are used with lazy binding on AVX and AVX512 processors. To avoid SSE transition penalty, if only the lower 128 bits of the first 8 vector registers are non-zero, we can preserve %xmm0 - %xmm7 registers with the zero upper bits. For AVX and AVX512 processors which support XGETBV with ECX == 1, we can use XGETBV with ECX == 1 to check if the upper 128 bits of YMM registers or the upper 256 bits of ZMM registers are zero. We can restore only the non-zero portion of vector registers with AVX/AVX512 load instructions which will zero-extend upper bits of vector registers. This patch adds _dl_runtime_resolve_sse_vex which saves and restores XMM registers with 128-bit AVX store/load instructions. It is used to preserve YMM/ZMM registers when only the lower 128 bits are non-zero. _dl_runtime_resolve_avx_opt and _dl_runtime_resolve_avx512_opt are added and used on AVX/AVX512 processors supporting XGETBV with ECX == 1 so that we store and load only the non-zero portion of vector registers. This avoids SSE transition penalty caused by _dl_runtime_resolve_avx and _dl_runtime_profile_avx512 when only the lower 128 bits of vector registers are used. _dl_runtime_resolve_avx_slow is added and used for AVX processors which don't support XGETBV with ECX == 1. Since there is no SSE transition penalty on AVX512 processors which don't support XGETBV with ECX == 1, _dl_runtime_resolve_avx512_slow isn't provided. [BZ #20495] [BZ #20508] * sysdeps/x86/cpu-features.c (init_cpu_features): For Intel processors, set Use_dl_runtime_resolve_slow and set Use_dl_runtime_resolve_opt if XGETBV suports ECX == 1. * sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt): New. (bit_arch_Use_dl_runtime_resolve_slow): Likewise. (index_arch_Use_dl_runtime_resolve_opt): Likewise. (index_arch_Use_dl_runtime_resolve_slow): Likewise. * sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Use _dl_runtime_resolve_avx512_opt and _dl_runtime_resolve_avx_opt if Use_dl_runtime_resolve_opt is set. Use _dl_runtime_resolve_slow if Use_dl_runtime_resolve_slow is set. * sysdeps/x86_64/dl-trampoline.S: Include <cpu-features.h>. (_dl_runtime_resolve_opt): New. Defined for AVX and AVX512. (_dl_runtime_resolve): Add one for _dl_runtime_resolve_sse_vex. * sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx_slow): New. (_dl_runtime_resolve_opt): Likewise. (_dl_runtime_profile): Define only if _dl_runtime_profile is defined.
* Check FMA after COMMON_CPUID_INDEX_80000001H.J. Lu2016-06-071-4/+9
| | | | | | | | | | | Since the FMA4 bit is in COMMON_CPUID_INDEX_80000001 and FMA4 requires AVX, determine if FMA4 is usable after COMMON_CPUID_INDEX_80000001 is available and if AVX is usable. [BZ #20195] * sysdeps/x86/cpu-features.c (get_common_indeces): Move FMA4 check to ... (init_cpu_features): Here.
* Detect Intel Goldmont and Airmont processorsH.J. Lu2016-04-151-0/+8
| | | | | | | | | Updated from the model numbers of Goldmont and Airmont processors in Intel64 And IA-32 Processor Architectures Software Developer's Manual Volume 3 Revision 058. * sysdeps/x86/cpu-features.c (init_cpu_features): Detect Intel Goldmont and Airmont processors.
* Remove Fast_Copy_Backward from Intel Core processorsH.J. Lu2016-04-011-5/+1
| | | | | | | | | Intel Core i3, i5 and i7 processors have fast unaligned copy and copy backward is ignored. Remove Fast_Copy_Backward from Intel Core processors to avoid confusion. * sysdeps/x86/cpu-features.c (init_cpu_features): Don't set bit_arch_Fast_Copy_Backward for Intel Core proessors.
* [x86] Add a feature bit: Fast_Unaligned_CopyH.J. Lu2016-03-281-1/+13
| | | | | | | | | | | | | | | | | | | On AMD processors, memcpy optimized with unaligned SSE load is slower than emcpy optimized with aligned SSSE3 while other string functions are faster with unaligned SSE load. A feature bit, Fast_Unaligned_Copy, is added to select memcpy optimized with unaligned SSE load. [BZ #19583] * sysdeps/x86/cpu-features.c (init_cpu_features): Set Fast_Unaligned_Copy with Fast_Unaligned_Load for Intel processors. Set Fast_Copy_Backward for AMD Excavator processors. * sysdeps/x86/cpu-features.h (bit_arch_Fast_Unaligned_Copy): New. (index_arch_Fast_Unaligned_Copy): Likewise. * sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Check Fast_Unaligned_Copy instead of Fast_Unaligned_Load.
* Set index_arch_AVX_Fast_Unaligned_Load only for Intel processorsH.J. Lu2016-03-221-72/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | Since only Intel processors with AVX2 have fast unaligned load, we should set index_arch_AVX_Fast_Unaligned_Load only for Intel processors. Move AVX, AVX2, AVX512, FMA and FMA4 detection into get_common_indeces and call get_common_indeces for other processors. Add CPU_FEATURES_CPU_P and CPU_FEATURES_ARCH_P to aoid loading GLRO(dl_x86_cpu_features) in cpu-features.c. [BZ #19583] * sysdeps/x86/cpu-features.c (get_common_indeces): Remove inline. Check family before setting family, model and extended_model. Set AVX, AVX2, AVX512, FMA and FMA4 usable bits here. (init_cpu_features): Replace HAS_CPU_FEATURE and HAS_ARCH_FEATURE with CPU_FEATURES_CPU_P and CPU_FEATURES_ARCH_P. Set index_arch_AVX_Fast_Unaligned_Load for Intel processors with usable AVX2. Call get_common_indeces for other processors with family == NULL. * sysdeps/x86/cpu-features.h (CPU_FEATURES_CPU_P): New macro. (CPU_FEATURES_ARCH_P): Likewise. (HAS_CPU_FEATURE): Use CPU_FEATURES_CPU_P. (HAS_ARCH_FEATURE): Use CPU_FEATURES_ARCH_P.
* Add _arch_/_cpu_ to index_*/bit_* in x86 cpu-features.hH.J. Lu2016-03-101-38/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | index_* and bit_* macros are used to access cpuid and feature arrays o struct cpu_features. It is very easy to use bits and indices of cpuid array on feature array, especially in assembly codes. For example, sysdeps/i386/i686/multiarch/bcopy.S has HAS_CPU_FEATURE (Fast_Rep_String) which should be HAS_ARCH_FEATURE (Fast_Rep_String) We change index_* and bit_* to index_cpu_*/index_arch_* and bit_cpu_*/bit_arch_* so that we can catch such error at build time. [BZ #19762] * sysdeps/unix/sysv/linux/x86_64/64/dl-librecon.h (EXTRA_LD_ENVVARS): Add _arch_ to index_*/bit_*. * sysdeps/x86/cpu-features.c (init_cpu_features): Likewise. * sysdeps/x86/cpu-features.h (bit_*): Renamed to ... (bit_arch_*): This for feature array. (bit_*): Renamed to ... (bit_cpu_*): This for cpu array. (index_*): Renamed to ... (index_arch_*): This for feature array. (index_*): Renamed to ... (index_cpu_*): This for cpu array. [__ASSEMBLER__] (HAS_FEATURE): Add and use field. [__ASSEMBLER__] (HAS_CPU_FEATURE)): Pass cpu to HAS_FEATURE. [__ASSEMBLER__] (HAS_ARCH_FEATURE)): Pass arch to HAS_FEATURE. [!__ASSEMBLER__] (HAS_CPU_FEATURE): Replace index_##name and bit_##name with index_cpu_##name and bit_cpu_##name. [!__ASSEMBLER__] (HAS_ARCH_FEATURE): Replace index_##name and bit_##name with index_arch_##name and bit_arch_##name.
* Set index_Fast_Unaligned_Load for Excavator family CPUsAmit Pawar2016-01-141-0/+8
| | | | | | | | | | | | | GLIBC benchtest testcases shows SSE2_Unaligned based implementations are performing faster compare to SSE2 based implementations for routines: strcmp, strcat, strncat, stpcpy, stpncpy, strcpy, strncpy and strstr. Flag index_Fast_Unaligned_Load is set for Excavator family 0x15h CPU's. This makes SSE2_Unaligned based implementations as default for these routines. [BZ #19467] * sysdeps/x86/cpu-features.c (init_cpu_features): Set index_Fast_Unaligned_Load flag for Excavator family CPUs.
* Update copyright dates with scripts/update-copyrights.Joseph Myers2016-01-041-1/+1
|
* Added memset optimized with AVX512 for KNL hardware.Andrew Senkevich2015-12-191-0/+2
| | | | | | | | | | | | | | | It shows improvement up to 28% over AVX2 memset (performance results attached at <https://sourceware.org/ml/libc-alpha/2015-12/msg00052.html>). * sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S: New file. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Added new file. * sysdeps/x86_64/multiarch/ifunc-impl-list.c: Added new tests. * sysdeps/x86_64/multiarch/memset.S: Added new IFUNC branch. * sysdeps/x86_64/multiarch/memset_chk.S: Likewise. * sysdeps/x86/cpu-features.h (bit_Prefer_No_VZEROUPPER, index_Prefer_No_VZEROUPPER): New. * sysdeps/x86/cpu-features.c (init_cpu_features): Set the Prefer_No_VZEROUPPER for Knights Landing.
* Enable Silvermont optimizations for Knights LandingH.J. Lu2015-12-151-0/+3
| | | | | | | | Knights Landing processor is based on Silvermont. This patch enables Silvermont optimizations for Knights Landing. * sysdeps/x86/cpu-features.c (init_cpu_features): Enable Silvermont optimizations for Knights Landing.
* Update family and model detection for AMD CPUsH.J. Lu2015-11-301-12/+15
| | | | | | | | | | | | | | | | AMD CPUs uses the similar encoding scheme for extended family and model as Intel CPUs as shown in: http://support.amd.com/TechDocs/25481.pdf This patch updates get_common_indeces to get family and model for both Intel and AMD CPUs when family == 0x0f. [BZ #19214] * sysdeps/x86/cpu-features.c (get_common_indeces): Add an argument to return extended model. Update family and model with extended family and model when family == 0x0f. (init_cpu_features): Updated.
* Detect and select i586/i686 implementation at run-time fedora/masterH.J. Lu2015-08-271-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We detect i586 and i686 features at run-time by checking CX8 and CMOV CPUID features bits. We can use these information to select the best implementation in ix86 multiarch. HAS_I586/HAS_I686 is true if i586/i686 instructions are available on the processor. Due to the reordering and the other nifty extensions in i686, it is not really good to use heavily i586 optimized code on an i686. It's better to use i486 code if it isn't an i586. USE_I586/USE_I686 is true if i586/i686 implementation should be used for the processor. USE_I586 is true only if i686 instructions aren't available. If i686 instructions are available, we always choose i686 or i486 implementation, in that order, and we never choose i586 implementation for i686-class processors. * sysdeps/i386/init-arch.h: New file. * sysdeps/i386/i586/init-arch.h: Likewise. * sysdeps/i386/i686/init-arch.h: Likewise. * sysdeps/x86/cpu-features.c (init_cpu_features): Set bit_I586 bit if CX8 is available. Set bit_I686 bit if CMOV is available. * sysdeps/x86/cpu-features.h (bit_I586): New. (bit_I686): Likewise. (bit_CX8): Likewise. (bit_CMOV): Likewise. (index_CX8): Likewise. (index_CMOV): Likewise. (index_I586): Likewise. (index_I686): Likewise. (reg_CX8): Likewise. (reg_CMOV): Likewise. (HAS_I586): Defined as HAS_ARCH_FEATURE (I586) if i586 isn't available at compile-time. (HAS_I686): Defined as HAS_ARCH_FEATURE (I686) if i686 isn't available at compile-time. * sysdeps/x86/init-arch.h (USE_I586): New macro. (USE_I686): Likewise.
* Define HAS_CPUID/HAS_I586/HAS_I686 from -march=H.J. Lu2015-08-181-2/+2
| | | | | | | | | | | | cpuid, i586 and i686 instructions are available if the processor specified by -march= supports them. We can use this information to determine whether those instructions can be used safely. * sysdeps/x86/cpu-features.c (init_cpu_features): Check whether cpuid is available only if HAS_CPUID is 0. * sysdeps/x86/cpu-features.h (HAS_CPUID): New. (HAS_I586): Likewise. (HAS_I686): Likewise.
* Check if cpuid is available in init_cpu_featuresH.J. Lu2015-08-131-0/+12
| | | | | | | | | Since not all i486 processors support cpuid, we call __get_cpuid_max to check if cpuid is available before using it if not compiling for i586, i686 nor x86-64. * sysdeps/x86/cpu-features.c (init_cpu_features): Call __get_cpuid_max if not compiling for i586, i686 nor x86-64.
* Add _dl_x86_cpu_features to rtld_globalH.J. Lu2015-08-131-0/+202
This patch adds _dl_x86_cpu_features to rtld_global in x86 ld.so and initializes it early before __libc_start_main is called so that cpu_features is always available when it is used and we can avoid calling __init_cpu_features in IFUNC selectors. * sysdeps/i386/dl-machine.h: Include <cpu-features.c>. (dl_platform_init): Call init_cpu_features. * sysdeps/i386/dl-procinfo.c (_dl_x86_cpu_features): New. * sysdeps/i386/i686/cacheinfo.c (DISABLE_PREFERRED_MEMORY_INSTRUCTION): Removed. * sysdeps/i386/i686/multiarch/Makefile (aux): Remove init-arch. * sysdeps/i386/i686/multiarch/Versions: Removed. * sysdeps/i386/i686/multiarch/ifunc-defines.sym (KIND_OFFSET): Removed. * sysdeps/i386/ldsodefs.h: Include <cpu-features.h>. * sysdeps/unix/sysv/linux/x86/Makefile (libpthread-sysdep_routines): Remove init-arch. * sysdeps/unix/sysv/linux/x86_64/dl-procinfo.c: Include <sysdeps/x86_64/dl-procinfo.c> instead of sysdeps/generic/dl-procinfo.c>. * sysdeps/x86/Makefile [$(subdir) == csu] (gen-as-const-headers): Add cpu-features-offsets.sym and rtld-global-offsets.sym. [$(subdir) == elf] (sysdep-dl-routines): Add dl-get-cpu-features. [$(subdir) == elf] (tests): Add tst-get-cpu-features. [$(subdir) == elf] (tests-static): Add tst-get-cpu-features-static. * sysdeps/x86/Versions: New file. * sysdeps/x86/cpu-features-offsets.sym: Likewise. * sysdeps/x86/cpu-features.c: Likewise. * sysdeps/x86/cpu-features.h: Likewise. * sysdeps/x86/dl-get-cpu-features.c: Likewise. * sysdeps/x86/libc-start.c: Likewise. * sysdeps/x86/rtld-global-offsets.sym: Likewise. * sysdeps/x86/tst-get-cpu-features-static.c: Likewise. * sysdeps/x86/tst-get-cpu-features.c: Likewise. * sysdeps/x86_64/dl-procinfo.c: Likewise. * sysdeps/x86_64/cacheinfo.c (__cpuid_count): Removed. Assume USE_MULTIARCH is defined and don't check it. (is_intel): Replace __cpu_features with GLRO(dl_x86_cpu_features). (is_amd): Likewise. (max_cpuid): Likewise. (intel_check_word): Likewise. (__cache_sysconf): Don't call __init_cpu_features. (__x86_preferred_memory_instruction): Removed. (init_cacheinfo): Don't call __init_cpu_features. Replace __cpu_features with GLRO(dl_x86_cpu_features). * sysdeps/x86_64/dl-machine.h: <cpu-features.c>. (dl_platform_init): Call init_cpu_features. * sysdeps/x86_64/ldsodefs.h: Include <cpu-features.h>. * sysdeps/x86_64/multiarch/Makefile (aux): Remove init-arch. * sysdeps/x86_64/multiarch/Versions: Removed. * sysdeps/x86_64/multiarch/cacheinfo.c: Likewise. * sysdeps/x86_64/multiarch/init-arch.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-defines.sym (KIND_OFFSET): Removed. * sysdeps/x86_64/multiarch/init-arch.h: Rewrite.