| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
__libc_current_sigrtmin
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
|
|
|
| |
The Linux version already target the current thread by using tgkill
along with getpid and gettid.
For arm, libpthread does not do a intra PLT since it will call the
raise from libc.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
A new 2.34 version is also provided.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
| |
The libc version is identical and built with same flags, it is also
uses as the default version.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
| |
The libc version is identical and built with same flags, it is also
uses as the default version.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
| |
The libc version is identical and built with same flags. The libc
version is set as the default version.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
|
|
|
|
| |
The libc version is identical and built with same flags. The libc
version is set as the default version.
The libpthread compat symbol requires to mask it when building the
loader object otherwise ld might complain about a missing
versioned symbol (as for alpha).
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The libc version is identical and built with same flags. Both aarch64
and nios2 also requires to export __send and tt was done previously with
the HAVE_INTERNAL_SEND_SYMBOL (which forced the symbol creation).
All __send callers are internal to libc and the original issue that
required the symbol export was due a missing libc_hidden_def. So
a compat symbol is added for __send and the libc_hidden_def is
defined regardless.
Checked on x86_64-linux-gnu and i686-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
| |
The libc version is identical and built with same flags.
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
|
| |
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
Checked on x86_64-linux-gnu.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out the startup code in csu/elf-init.c has a perfect pair of
ROP gadgets (see Marco-Gisbert and Ripoll-Ripoll, "return-to-csu: A
New Method to Bypass 64-bit Linux ASLR"). These functions are not
needed in dynamically-linked binaries because DT_INIT/DT_INIT_ARRAY
are already processed by the dynamic linker. However, the dynamic
linker skipped the main program for some reason. For maximum
backwards compatibility, this is not changed, and instead, the main
map is consulted from __libc_start_main if the init function argument
is a NULL pointer.
For statically linked binaries, the old approach based on linker
symbols is still used because there is nothing else available.
A new symbol version __libc_start_main@@GLIBC_2.34 is introduced because
new binaries running on an old libc would not run their ELF
constructors, leading to difficult-to-debug issues.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The elision interfaces are closely aligned between the targets that
implement them, so declare them in the generic <lowlevellock.h>
file.
Empty .c stubs are provided, so that fewer makefile updates
under sysdeps are needed. Also simplify initialization via
__libc_early_init.
The symbols __lll_clocklock_elision, __lll_lock_elision,
__lll_trylock_elision, __lll_unlock_elision, __pthread_force_elision
move into libc. For the time being, non-hidden references are used
from libpthread to access them, but once that part of libpthread
is moved into libc, hidden symbols will be used again. (Hidden
references seem desirable to reduce the likelihood of transactions
aborts.)
|
|
|
|
|
|
|
|
| |
Linux 5.11 has one new syscall, epoll_pwait2. Update
syscall-names.list and regenerate the arch-syscall.h headers with
build-many-glibcs.py update-syscalls.
Tested with build-many-glibcs.py.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The XSTAT_IS_XSTAT64 and STAT_IS_KERNEL_STAT flags are now set to 1 and
STATFS_IS_STATFS64 is set to __STATFS_MATCHES_STATFS64. This makes the
default ABI for newer ports to provide only LFS calls.
A copy of non-LFS support is provided to 32-bit ABIS with non-LFS
support (arm, csky, i386, m68k, nios2, s390, and sh). Is also allows
to remove the 64-bit ports, which already uses the default values.
This patch does not change the code generation.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
aarch64, arc, ia64, mips64, powerpc64, riscv32, riscv64, s390x, sparc64,
and x86_64 defines STATFS_IS_STATFS64 to 0, but all of them alias
statfs to statfs64 and the struct statfs has the same and layout of
struct statfs64.
The correct definition will be used on the [f]statfs[64] consolidation.
This patch does not change code generation since the symbols are
implemented using the auto-generation syscall for all the aforementioned
ABIs.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Linux 5.10 adds PTRACE_PEEKMTETAGS and PTRACE_POKEMTETAGS for AArch64.
Adding those shows up that glibc is also missing PTRACE_SYSEMU and
PTRACE_SYSEMU_SINGLESTEP, for AArch64 (where they were added to Linux
in 5.3) and for PowerPC (where they were added in Linux 4.20); it
already has those two defines for x86. Add all those defines to
glibc's headers.
Tested with build-many-glibcs.py for aarch64-linux-gnu and
powerpc-linux-gnu.
|
|
|
|
|
|
|
|
|
| |
It is not available with the baseline ISA.
Fixes commit 68ab82f56690ada86ac1e0c46bad06ba189a10ef
("powerpc: Runtime selection between sc and scv for syscalls").
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Store ISA level in the portion of the unused upper 32 bits of the hwcaps
field in cache and the unused pad field in aux cache. ISA level is stored
and checked only for shared objects in glibc-hwcaps subdirectories. The
shared objects in the default directories aren't checked since there are
no fallbacks for these shared objects.
Tested on x86-64-v2, x86-64-v3 and x86-64-v4 machines with
--disable-hardcoded-path-in-tests and --enable-hardcoded-path-in-tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
|
|
|
|
|
|
|
|
|
|
| |
clone already uses r31 to temporarily save input arguments before doing the
syscall, so we use a different register to read from the TCB. We can also avoid
allocating another stack frame, which is not needed since we can simply extend
the usage of the red zone.
Tested-by: Lucas A. M. Magalhães <lamm@linux.ibm.com>
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Linux kernel v5.9 added support for system calls using the scv
instruction for POWER9 and later. The new codepath provides better
performance (see below) if compared to using sc. For the
foreseeable future, both sc and scv mechanisms will co-exist, so this
patch enables glibc to do a runtime check and use scv when it is
available.
Before issuing the system call to the kernel, we check hwcap2 in the TCB
for PPC_FEATURE2_SCV to see if scv is supported by the kernel. If not,
we fallback to sc and keep the old behavior.
The kernel implements a different error return convention for scv, so
when returning from a system call we need to handle the return value
differently depending on the instruction we used to enter the kernel.
For syscalls implemented in ASM, entry and exit are implemented by
different macros (PSEUDO and PSEUDO_RET, resp.), which may be used in
sequence (e.g. for templated syscalls) or with other instructions in
between (e.g. clone). To avoid accessing the TCB a second time on
PSEUDO_RET to check which instruction we used, the value read from
hwcap2 is cached on a non-volatile register.
This is not needed when using INTERNAL_SYSCALL macro, since entry and
exit are bundled into the same inline asm directive.
The dynamic loader may issue syscalls before the TCB has been setup
so it always uses sc with no extra checks. For the static case, there
is no compile-time way to determine if we are inside startup code,
so we also check the value of the thread pointer before effectively
accessing the TCB. For such situations in which the availability of
scv cannot be determined, sc is always used.
Support for scv in syscalls implemented in their own ASM file (clone and
vfork) will be added later. For now simply use sc as before.
Average performance over 1M calls for each syscall "type":
- stat: C wrapper calling INTERNAL_SYSCALL
- getpid: templated ASM syscall
- syscall: call to gettid using syscall function
Standard:
stat : 1.573445 us / ~3619 cycles
getpid : 0.164986 us / ~379 cycles
syscall : 0.162743 us / ~374 cycles
With scv:
stat : 1.537049 us / ~3535 cycles <~ -84 cycles / -2.32%
getpid : 0.109923 us / ~253 cycles <~ -126 cycles / -33.25%
syscall : 0.116410 us / ~268 cycles <~ -106 cycles / -28.34%
Tested on powerpc, powerpc64, powerpc64le (with and without scv)
Tested-by: Lucas A. M. Magalhães <lamm@linux.ibm.com>
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
|
|
|
|
|
|
|
|
| |
Linux 5.10 has one new syscall, process_madvise. Update
syscall-names.list and regenerate the arch-syscall.h headers with
build-many-glibcs.py update-syscalls.
Tested with build-many-glibcs.py.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It removes all the arch-specific assembly implementation. The
outliers are alpha, where its kernel ABI explict return -ENOMEM
in case of failure; and i686, where it can't use
"call *%gs:SYSINFO_OFFSET" during statup in static PIE.
Also some ABIs exports an additional ___brk_addr symbol and to
handle it an internal HAVE_INTERNAL_BRK_ADDR_SYMBOL is added.
Checked on x86_64-linux-gnu, i686-linux-gnu, adn with builsd for
the affected ABIs.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
|
|
|
|
|
|
|
|
| |
Linux 5.9 has one new syscall, close_range. Update syscall-names.list
and regenerate the arch-syscall.h headers with build-many-glibcs.py
update-syscalls.
Tested with build-many-glibcs.py.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the glibc the time function can use vDSO (on power and x86 the
USE_IFUNC_TIME is defined), time syscall or 'default' time() from
./time/time.c (as a fallback).
In this patch the last function (time) has been refactored and moved
to ./sysdeps/unix/sysv/linux/time.c to be Linux specific.
The new __time64 explicit 64 bit function for providing 64 bit value of
seconds after epoch (by internally calling __clock_gettime64) has been
introduced.
Moreover, a 32 bit version - __time has been refactored to internally
use __time64.
The __time is now supposed to be used on systems still supporting 32 bit
time (__TIMESIZE != 64) - hence the necessary check for time_t potential
overflow.
The iFUNC vDSO direct call optimization has been removed from both i686 and
powerpc32 (USE_IFUNC_TIME is not defined for those architectures
anymore). The Linux kernel does not provide a y2038 safe implementation of
time neither it plans to provide it in the future, __clock_gettime64
should be used instead. Keeping support for this optimization would require
to handle another build permutation (!__ASSUME_TIME64_SYSCALLS &&
USE_IFUNC_TIME which adds more complexity and has limited use (since the
idea is to eventually have a y2038 safe glibc build).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __time64 and __time.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pthread_mutex_clocklock and pthread_mutex_timedlock have been converted
to support 64 bit time.
This change uses:
- New __futex_clocklock_wait64 (instead of lll_timedwait)
from ./sysdeps/nptl/futex-helpers.c and
- New __futex_clocklock64 function (instead of lll_clocklock)
- New futex_lock_pi64
defined in sysdeps/nptl/futex-internal.h
The pthread_mutex_{clock|timed}lock only accepts absolute time.
Moreover, there is no need to check for NULL passed as *abstime pointer to the
syscalls as those calls have exported symbols marked with __nonull attribute
for abstime.
Some architectures - namely x86, powerpc and s390 - do support lock elision.
For those - adjustments have been made in arch specific elision-*.c files
to use __futex_clocklock64 instead of lll_clocklock.
The __lll_lock_elision (aliased to __lll_clocklock_elision in e.g.
sysdeps/unix/sysv/linux/s390/elision-timed.c) just uses, in this patch
provided, __futex_clocklock64.
For systems with __TIMESIZE != 64 && __WORDSIZE == 32:
- Conversions between 64 bit time to 32 bit are necessary
- Redirection to pthread_mutex_{clock|timed}lock will provide support for 64
bit time
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
| |
It adds the missing new symbols from 8ed005daf0 and 589260cef8 (which
added versioned symbols for {f,l}stat{at}{64} and mknod{a}t) on some
libc.abilist ABIs.
|
|
|
|
|
|
|
|
|
|
|
| |
The common definitions are moved to a Linux generic stat.h while the
struct stat{64} definition are moved to a arch-specific struct_stat.h
header.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the mknod and mknodat static wrapper and add the
symbols on the libc with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to the arch-specific
xstatver.h file.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the stat, stat64, lstat, lstat64, fstat, fstat64,
fstatat, and fstatat64 static wrapper and add the symbol on the libc
with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to a arch-specific
xstatver.h file. The internal defines that redirects internals
{f}stat{at} to their {f}xstat{at} counterparts are removed for Linux
(!NO_RTLD_HIDDEN). Hurd still requires them since {f}stat{at} pulls
extra objects that makes the loader build fail otherwise (I haven't
dig into why exactly).
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
| |
This patch adds the ABI-related bits to reflect the new mallinfo2
function, and adds a test case to verify basic functionality.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstatat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstatat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k, mips32,
microblaze, s390, sh, powerpc, and sparc32). it issues
__NR_fstatat64 and convert to non-LFS stat struct based on the
version.
Also non-LFS mips64 is an outlier and it has its own implementation
since _STAT_VER_LINUX requires a different conversion function (it
uses the kernel_stat as the sysissues argument since its exported ABI
is different than the kernel one for both non-LFS and LFS
implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issues __NR_newfstatat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. 64-bit kABI outlier (sparc64): it issuess fstatat64 with a
temporary stat64 and convert to output stat64 based on the
input version (and using a sparc64 specific __xstat32_conv).
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa, m68k,
microblaze, mips32, nios2, sh, powerpc32, and sparc32): it issues
__NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it uses the __NR_fstatat64 syscall instead.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issuess __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_fstat, otherwise it calls __NR_fstat64 and convert
to non-LFS stat struct and handle possible overflows on st_ino,
st_size, or st_blocks.
Also non-LFS mips is an outlier and it has its own implementation since
_STAT_VER_LINUX requires a different conversion function (it uses the
kernel_stat as the sysissues argument since its exported ABI is
different than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issuess __NR_fstat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_fstat64 instead of __NR_fstat
(sparc64): it issues __NR_fstat for _STAT_VER_KERNEL or
__NR_fstat64 and convert to struct stat64.
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issuess __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa,
m68k, microblaze, mips32, nios2, sh, powerpc32, and sparc32): it
issues __NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to issues
__NR_fstat64 and use the kernel_stat with __NR_fstat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|