| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
|
|
|
|
|
|
| |
Rename atomic_exchange_rel/acq to use atomic_exchange_release/acquire
since these map to the standard C11 atomic builtins.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
|
|
|
|
|
|
|
|
|
|
|
| |
This patch uses the new futex PI operation provided by Linux v5.14
when it is required.
The futex_lock_pi64() is moved to futex-internal.c (since it used on
two different places and its code size might be large depending of the
kernel configuration) and clockid is added as an argument.
Co-authored-by: Kurt Kanzenbach <kurt@linutronix.de>
|
|
|
|
|
|
|
|
|
|
|
| |
For !__ASSUME_TIME64_SYSCALLS there is no need to issue a 64-bit syscall
if the provided timeout fits in a 32-bit one. The 64-bit usage should
be rare since the timeout is a relative one.
Checked on i686-linux-gnu on a 4.15 kernel and on a 5.11 kernel
(with and without --enable-kernel=5.1) and on x86_64-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
| |
This moves __futex_abstimed_wait64 and
__futex_abstimed_wait_cancelable64 and exports these functions as
GLIBC_PRIVATE.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After gai_suspend and aio_suspend conversion to support 64 bit time and
hence rewriting the code to use only absolute variants of futex wait
functions (i.e. __futex_abstimed_wait64 and __futex_abstimed_wait_cancelable64)
futex_reltimed_wait{_cancelable} are not needed anymore and can be removed.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The earlier implementation of this, __lll_clocklock, calls lll_clockwait
that doesn't return the futex syscall error codes. It always tries again
if that fails.
However in the current implementation, when the futex returns EAGAIN,
__futex_clocklock64 will also return EGAIN, even if the futex is taken.
This patch fixes the EAGAIN issue and also adds a check for EINTR. As
futex syscall can return EINTR if the thread is interrupted by a signal.
In this case I'm assuming the function should continue trying to lock as
there is no mention to about it on POSIX. Also add a test for both
scenarios.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The aio_suspend function has been converted to support 64 bit time.
This change uses (in aio_misc.h):
- __futex_abstimed_wait64 (instead of futex_reltimed_wait)
- __futex_abstimed_wait_cancellable64
(instead of futex_reltimed_wait_cancellable)
from ./sysdeps/nptl/futex-helpers.h
The aio_suspend() accepts relative timeout, which then is converted to
absolute one.
The i686-gnu port (HURD) do not define DONT_NEED_AIO_MISC_COND and as it
doesn't (yet) support 64 bit time it uses not converted
pthread_cond_timedwait().
The __aio_suspend() is supposed to be run on ports with __TIMESIZE !=64 and
__WORDSIZE==32. It internally utilizes __aio_suspend_time64() and hence the
conversion from 32 bit struct timespec to 64 bit one is required.
For ports supporting 64 bit time the __aio_suspend_time64() will be used
either via alias (to __aio_suspend when __TIMESIZE==64) or redirection
(when -D_TIME_BITS=64 is passed).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For non null timeouts, the __futex_clocklock_wait64 creates an a
relative timeout by subtracting the current time from the input
argument. The same behavior can be obtained with FUTEX_WAIT_BITSET
without the need to calculate the relative timeout. Besides consolidate
the code it also avoid the possible relative timeout issues [1].
The __futex_abstimed_wait64 needs also to return EINVAL syscall
errors.
Checked on x86_64-linux-gnu and i686-linux-gnu.
[1] https://sourceware.org/pipermail/libc-alpha/2020-November/119881.html
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
| |
It can be replaced with a __futex_abstimed_wait64 call.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
| |
And add a small optimization to avoid setting the operation for the
32-bit time fallback operation.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
|
| |
It can be replaced with a __futex_abstimed_wait_cancelable64 call,
with the advantage that there is no need to further clock adjustments
to create a absolute timeout. It allows to remove the now ununsed
futex_timed_wait_cancel64 internal function.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
| |
It is used solely on __pthread_cond_wait_common and the call can be
replaced by a __futex_abstimed_wait_cancelable64 one.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
| |
The __futex_abstimed_wait usage was remove with 3102e28bd11 and the
__futex_abstimed_wait_cancelable by 323592fdc92 and b8d3e8fbaac.
The futex_lock_pi can be replaced by a futex_lock_pi64.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The tls.h inclusion is not really required and limits possible
definition on more arch specific headers.
This is a cleanup to allow inline functions on sysdep.h, more
specifically on i386 and ia64 which requires to access some tls
definitions its own.
No semantic changes expected, checked with a build against all
affected ABIs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The commit:
"y2038: nptl: Convert pthread_mutex_{clock|timed}lock to support 64 bit"
SHA1: 29e9874a048f47e2d46c40253036c8d2de921548
introduced support for 64 bit timeouts. Unfortunately, it was missing the
code for bitset - i.e. lll_futex_clock_wait_bitset C preprocessor macro
was used. As a result the 64 bit struct __timespec64 was coerced to 32
bit struct timespec and regression visible as timeout was observed
(nptl/tst-robust10 on s390).
Reported-by: Stefan Liebler <stli@linux.ibm.com>
Tested-by: Stefan Liebler <stli@linux.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pthread_mutex_clocklock and pthread_mutex_timedlock have been converted
to support 64 bit time.
This change uses:
- New __futex_clocklock_wait64 (instead of lll_timedwait)
from ./sysdeps/nptl/futex-helpers.c and
- New __futex_clocklock64 function (instead of lll_clocklock)
- New futex_lock_pi64
defined in sysdeps/nptl/futex-internal.h
The pthread_mutex_{clock|timed}lock only accepts absolute time.
Moreover, there is no need to check for NULL passed as *abstime pointer to the
syscalls as those calls have exported symbols marked with __nonull attribute
for abstime.
Some architectures - namely x86, powerpc and s390 - do support lock elision.
For those - adjustments have been made in arch specific elision-*.c files
to use __futex_clocklock64 instead of lll_clocklock.
The __lll_lock_elision (aliased to __lll_clocklock_elision in e.g.
sysdeps/unix/sysv/linux/s390/elision-timed.c) just uses, in this patch
provided, __futex_clocklock64.
For systems with __TIMESIZE != 64 && __WORDSIZE == 32:
- Conversions between 64 bit time to 32 bit are necessary
- Redirection to pthread_mutex_{clock|timed}lock will provide support for 64
bit time
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the helper function, which uses struct __timespec64
to provide 64 bit absolute time to futex syscalls.
The aim of this function is to move convoluted pre-processor
macro code from sysdeps/nptl/lowlevellock-futex.h to C
function in futex-internal.c
The futex_abstimed_wait64 function has been put into a separate
file on the purpose - to avoid issues apparent on the m68k
architecture related to small number of available registers (there
is not enough registers to put all necessary arguments in them if
the above function would be added to futex-internal.h with
__always_inline attribute).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
|
|
|
|
|
|
|
|
| |
This alias macro shall be moved to the beginning of the futex-internal.h
to be easily reused by other functions, which would support 64 bit time.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pthread_cond_clockwait and pthread_cond_timedwait have been converted
to support 64 bit time.
This change introduces new futex_abstimed_wait_cancelable64 function in
./sysdeps/nptl/futex-helpers.c, which uses futex_time64 where possible
and tries to replace low-level preprocessor macros from
lowlevellock-futex.h
The pthread_cond_{clock|timed}wait only accepts absolute time. Moreover,
there is no need to check for NULL passed as *abstime pointer as
__pthread_cond_wait_common() always passes non-NULL struct __timespec64
pointer to futex_abstimed_wait_cancellable64().
For systems with __TIMESIZE != 64 && __WORDSIZE == 32:
- Conversions between 64 bit time to 32 bit are necessary
- Redirection to __pthread_cond_{clock|timed}wait64 will provide support
for 64 bit time
The futex_abstimed_wait_cancelable64 function has been put into a separate
file on the purpose - to avoid issues apparent on the m68k architecture
related to small number of available registers (there is not enough
registers to put all necessary arguments in them if the above function
would be added to futex-internal.h with __always_inline attribute).
In fact - new function - namely __futex_abstimed_wait_cancellable32 is
used to reduce number of needed registers (as some in-register values are
stored on the stack when function call is made).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test the proper usage of both __pthread_cond_{clock|timed}wait64 and
__pthread_cond_{clock|timed}wait.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pthread_clockjoin_np and pthread_timedjoin_np have been converted to
support 64 bit time.
This change introduces new futex_timed_wait_cancel64 function in
./sysdeps/nptl/futex-internal.h, which uses futex_time64 where possible
and tries to replace low-level preprocessor macros from
lowlevellock-futex.h
The pthread_{timed|clock}join_np only accept absolute time. Moreover,
there is no need to check for NULL passed as *abstime pointer as
clockwait_tid() always passes struct __timespec64.
For systems with __TIMESIZE != 64 && __WORDSIZE == 32:
- Conversions between 64 bit time to 32 bit are necessary
- Redirection to __pthread_{clock|timed}join_np64 will provide support
for 64 bit time
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test the proper usage of both __pthread_{timed|clock}join_np64 and
__pthread_{timed|clock}join_np.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the generic futex_lock_pi and futex_unlock_pi to wrap
around the syscall machinery required to issue the syscall calls. It
simplifies a bit the futex code required to implement PI mutexes.
No function changes, checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
NPTL is already Linux specific, there is no need to parametrize futex
operations and add a sysdep Linux specific implementation. This patch
moves the relevant Linux code to nptl one.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only implementation of futex_supports_exact_relative_timeouts always
returns true. Let's remove it and all its callers.
* nptl/pthread_cond_wait.c: (__pthread_cond_clockwait): Remove code
that is only useful if futex_supports_exact_relative_timeouts ()
returns false.
* nptl/pthread_condattr_setclock.c: (pthread_condattr_setclock):
Likewise.
* sysdeps/nptl/futex-internal.h: Remove comment about relative
timeouts potentially being imprecise since it's no longer true.
Remove declaration of futex_supports_exact_relative_timeouts.
* sysdeps/unix/sysv/linux/futex-internal.h: Remove implementation
of futex_supports_exact_relative_timeouts.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for adding POSIX clockwait variants of timedwait functions,
add a clockid_t parameter to futex_abstimed_wait functions and pass
CLOCK_REALTIME from all callers for the time being.
Replace lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset
which takes a clockid_t parameter rather than the magic clockbit.
* sysdeps/nptl/lowlevellock-futex.h,
sysdeps/unix/sysv/linux/lowlevellock-futex.h: Replace
lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset that
takes a clockid rather than a special clockbit.
* sysdeps/nptl/lowlevellock-futex.h: Add
lll_futex_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling lll_futex_clock_wait_bitset.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h
(futex_abstimed_wait, futex_abstimed_wait_cancelable): Add
clockid_t parameter to indicate which clock the absolute time
passed should be measured against. Pass that clockid onto
lll_futex_clock_wait_bitset. Add invalid clock as reason for
returning -EINVAL.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h: Introduce
futex_abstimed_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling futex_abstimed_wait.
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Remove
code to calculate relative timeout for
__PTHREAD_COND_CLOCK_MONOTONIC_MASK and just pass CLOCK_MONOTONIC
or CLOCK_REALTIME as required to futex_abstimed_wait_cancelable.
* nptl/pthread_rwlock_common (__pthread_rwlock_rdlock_full)
(__pthread_wrlock_full), nptl/sem_waitcommon (do_futex_wait): Pass
additional CLOCK_REALTIME to futex_abstimed_wait_cancelable.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock):
Switch to lll_futex_clock_wait_bitset and pass CLOCK_REALTIME
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
|
|
|
|
|
|
| |
* All files with FSF copyright notices: Update copyright dates
using scripts/update-copyrights.
* locale/programs/charmap-kw.h: Regenerated.
* locale/programs/locfile-kw.h: Likewise.
|
| |
|
|
|
|
|
|
|
| |
* All files with FSF copyright notices: Update copyright dates
using scripts/update-copyrights.
* locale/programs/charmap-kw.h: Regenerated.
* locale/programs/locfile-kw.h: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
posix/wordexp-test.c used libc-internal.h for PTR_ALIGN_DOWN; similar
to what was done with libc-diag.h, I have split the definitions of
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and PTR_ALIGN_DOWN
to a new header, libc-pointer-arith.h.
It then occurred to me that the remaining declarations in libc-internal.h
are mostly to do with early initialization, and probably most of the
files including it, even in the core code, don't need it anymore. Indeed,
only 19 files actually need what remains of libc-internal.h. 23 others
need libc-diag.h instead, and 12 need libc-pointer-arith.h instead.
No file needs more than one of them, and 16 don't need any of them!
So, with this patch, libc-internal.h stops including libc-diag.h as
well as losing the pointer arithmetic macros, and all including files
are adjusted.
* include/libc-pointer-arith.h: New file. Define
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and
PTR_ALIGN_DOWN here.
* include/libc-internal.h: Definitions of above macros
moved from here. Don't include libc-diag.h anymore either.
* posix/wordexp-test.c: Include stdint.h and libc-pointer-arith.h.
Don't include libc-internal.h.
* debug/pcprofile.c, elf/dl-tunables.c, elf/soinit.c, io/openat.c
* io/openat64.c, misc/ptrace.c, nptl/pthread_clock_gettime.c
* nptl/pthread_clock_settime.c, nptl/pthread_cond_common.c
* string/strcoll_l.c, sysdeps/nacl/brk.c
* sysdeps/unix/clock_settime.c
* sysdeps/unix/sysv/linux/i386/get_clockfreq.c
* sysdeps/unix/sysv/linux/ia64/get_clockfreq.c
* sysdeps/unix/sysv/linux/powerpc/get_clockfreq.c
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c:
Don't include libc-internal.h.
* elf/get-dynamic-info.h, iconv/loop.c
* iconvdata/iso-2022-cn-ext.c, locale/weight.h, locale/weightwc.h
* misc/reboot.c, nis/nis_table.c, nptl_db/thread_dbP.h
* nscd/connections.c, resolv/res_send.c, soft-fp/fmadf4.c
* soft-fp/fmasf4.c, soft-fp/fmatf4.c, stdio-common/vfscanf.c
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
* sysdeps/ieee754/dbl-64/k_rem_pio2.c
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
* sysdeps/ieee754/flt-32/k_rem_pio2f.c
* sysdeps/ieee754/ldbl-128/k_tanl.c
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
* sysdeps/ieee754/ldbl-96/k_tanl.c, sysdeps/nptl/futex-internal.h:
Include libc-diag.h instead of libc-internal.h.
* elf/dl-load.c, elf/dl-reloc.c, locale/programs/locarchive.c
* nptl/nptl-init.c, string/strcspn.c, string/strspn.c
* malloc/malloc.c, sysdeps/i386/nptl/tls.h
* sysdeps/nacl/dl-map-segments.h, sysdeps/x86_64/atomic-machine.h
* sysdeps/unix/sysv/linux/spawni.c
* sysdeps/x86_64/nptl/tls.h:
Include libc-pointer-arith.h instead of libc-internal.h.
* elf/get-dynamic-info.h, sysdeps/nacl/dl-map-segments.h
* sysdeps/x86_64/atomic-machine.h:
Add multiple include guard.
|
| |
|
| |
|
|
This adds new functions for futex operations, starting with wait,
abstimed_wait, reltimed_wait, wake. They add documentation and error
checking according to the current draft of the Linux kernel futex manpage.
Waiting with absolute or relative timeouts is split into separate functions.
This allows for removing a few cases of code duplication in pthreads code,
which uses absolute timeouts; also, it allows us to put platform-specific
code to go from an absolute to a relative timeout into the platform-specific
futex abstractions..
Futex operations that can be canceled are also split out into separate
functions suffixed by "_cancelable".
There are separate versions for both Linux and NaCl; while they currently
differ only slightly, my expectation is that the separate versions of
lowlevellock-futex.h will eventually be merged into futex-internal.h
when we get to move the lll_ functions over to the new futex API.
|