about summary refs log tree commit diff
path: root/sysdeps/ieee754
Commit message (Collapse)AuthorAgeFilesLines
* math: Use fmin/fmax on hypotWilco Dijkstra2021-12-131-2/+3
| | | | | | It optimizes for architectures that provides fast builtins. Checked on aarch64-linux-gnu.
* math: Use an improved algorithm for hypotl (ldbl-128)Adhemerval Zanella2021-12-131-130/+96
| | | | | | | | | | | | | | | | | | | | | This implementation is based on 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for subnormal results. The main advantage of the new algorithm is its precision. With a random 1e9 input pairs in the range of [LDBL_MIN, LDBL_MAX], glibc current implementation shows around 0.05% results with an error of 1 ulp (453266 results) while the new implementation only shows 0.0001% of total (1280). Checked on aarch64-linux-gnu and x86_64-linux-gnu. [1] https://arxiv.org/pdf/1904.09481.pdf
* math: Use an improved algorithm for hypotl (ldbl-96)Adhemerval Zanella2021-12-131-133/+98
| | | | | | | | | | | | | | | | | | | This implementation is based on 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for subnormal results. The main advantage of the new algorithm is its precision. With a random 1e8 input pairs in the range of [LDBL_MIN, LDBL_MAX], glibc current implementation shows around 0.02% results with an error of 1 ulp (23158 results) while the new implementation only shows 0.0001% of total (111). [1] https://arxiv.org/pdf/1904.09481.pdf
* math: Improve hypot performance with FMAWilco Dijkstra2021-12-131-1/+16
| | | | | | | | | | | Improve hypot performance significantly by using fma when available. The fma version has twice the throughput of the previous version and 70% of the latency. The non-fma version has 30% higher throughput and 10% higher latency. Max ULP error is 0.949 with fma and 0.792 without fma. Passes GLIBC testsuite.
* math: Use an improved algorithm for hypot (dbl-64)Wilco Dijkstra2021-12-131-143/+92
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implementation is based on the 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for denormal results. The main advantage of the new algorithm is its precision: with a random 1e9 input pairs in the range of [DBL_MIN, DBL_MAX], glibc current implementation shows around 0.34% results with an error of 1 ulp (3424869 results) while the new implementation only shows 0.002% of total (18851). The performance result are also only slight worse than current implementation. On x86_64 (Ryzen 5900X) with gcc 12: Before: "hypot": { "workload-random": { "duration": 3.73319e+09, "iterations": 1.12e+08, "reciprocal-throughput": 22.8737, "latency": 43.7904, "max-throughput": 4.37184e+07, "min-throughput": 2.28361e+07 } } After: "hypot": { "workload-random": { "duration": 3.7597e+09, "iterations": 9.8e+07, "reciprocal-throughput": 23.7547, "latency": 52.9739, "max-throughput": 4.2097e+07, "min-throughput": 1.88772e+07 } } Co-Authored-By: Adhemerval Zanella <adhemerval.zanella@linaro.org> Checked on x86_64-linux-gnu and aarch64-linux-gnu. [1] https://arxiv.org/pdf/1904.09481.pdf
* math: Simplify hypotf implementationAdhemerval Zanella2021-12-132-35/+37
| | | | | | | | | | | | Use a more optimized comparison for check for NaN and infinite and add an inlined issignaling implementation for float. With gcc it results in 2 FP comparisons. The file Copyright is also changed to use GPL, the implementation was completely changed by 7c10fd3515f to use double precision instead of scaling and this change removes all the GET_FLOAT_WORD usage. Checked on x86_64-linux-gnu.
* Fixed inaccuracy of j0f (BZ #28185)Paul Zimmermann2021-10-051-3/+3
| | | | | | | | | | | | | The largest errors over the full binary32 range are after this patch (on x86_64): RNDN: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6 RNDZ: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6 RNDU: libm wrong by up to 9.00e+00 ulp(s) [9] for x=0x1.04c39cp+6 RNDD: libm wrong by up to 8.98e+00 ulp(s) [9] for x=0x1.4b7066p+7 Inputs that were yielding huge errors have been added to "make check". Reviewed-by: Adhemeral Zanella <adhemerval.zanella@linaro.org>
* Add fmaximum, fminimum functionsJoseph Myers2021-09-2810-1/+227
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2X adds new <math.h> functions for floating-point maximum and minimum, corresponding to the new operations that were added in IEEE 754-2019 because of concerns about the old operations not being associative in the presence of signaling NaNs. fmaximum and fminimum handle NaNs like most <math.h> functions (any NaN argument means the result is a quiet NaN). fmaximum_num and fminimum_num handle both quiet and signaling NaNs the way fmax and fmin handle quiet NaNs (if one argument is a number and the other is a NaN, return the number), but still raise "invalid" for a signaling NaN argument, making them exceptions to the normal rule that a function with a floating-point result raising "invalid" also returns a quiet NaN. fmaximum_mag, fminimum_mag, fmaximum_mag_num and fminimum_mag_num are corresponding functions returning the argument with greatest or least absolute value. All these functions also treat +0 as greater than -0. There are also corresponding <tgmath.h> type-generic macros. Add these functions to glibc. The implementations use type-generic templates based on those for fmax, fmin, fmaxmag and fminmag, and test inputs are based on those for those functions with appropriate adjustments to the expected results. The RISC-V maintainers might wish to add optimized versions of fmaximum_num and fminimum_num (for float and double), since RISC-V (F extension version 2.2 and later) provides instructions corresponding to those functions - though it might be at least as useful to add architecture-independent built-in functions to GCC and teach the RISC-V back end to expand those functions inline, which is what you generally want for functions that can be implemented with a single instruction. Tested for x86_64 and x86, and with build-many-glibcs.py.
* powerpc64le: Avoid conflicting types for f64xfmaf128 when IFUNC is not usedTulio Magno Quites Machado Filho2021-09-231-0/+2
| | | | | | | | | Avoid defining f64xfmaf128 twice when building s_fmaf128.c. This can be reproduced on powerpc64le whenever f128 functions do not have IFUNC enabled, e.g. using "--with-cpu=power8 --disable-multi-arch", or when using "-with-cpu=power9". Fixes: b3f27d8150d4f ("Add narrowing fma functions")
* Add narrowing fma functionsJoseph Myers2021-09-2226-1/+598
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the narrowing fused multiply-add functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal, f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x, f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128, f64xfmaf128 for configurations with _Float64x and _Float128; __f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case (for calls to ffmal and dfmal when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, especially that for sqrt, so the description of those generally applies to this patch as well. As with sqrt, I reused the same test inputs in auto-libm-test-in as for non-narrowing fma rather than adding extra or separate inputs for narrowing fma. The tests in libm-test-narrow-fma.inc also follow those for non-narrowing fma. The non-narrowing fma has a known bug (bug 6801) that it does not set errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather than fixing this or having narrowing fma check for errors when non-narrowing does not (complicating the cases when narrowing fma can otherwise be an alias for a non-narrowing function), this patch does not attempt to check for errors from narrowing fma and set errno; the CHECK_NARROW_FMA macro is still present, but as a placeholder that does nothing, and this missing errno setting is considered to be covered by the existing bug rather than needing a separate open bug. missing-errno annotations are duly added to many of the auto-libm-test-in test inputs for fma. This completes adding all the new functions from TS 18661-1 to glibc, so will be followed by corresponding stdc-predef.h changes to define __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support for TS 18661-1 will be at a similar level to that for C standard floating-point facilities up to C11 (pragmas not implemented, but library functions done). (There are still further changes to be done to implement changes to the types of fromfp functions from N2548.) Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
* Fix f64xdivf128, f64xmulf128 spurious underflows (bug 28358)Joseph Myers2021-09-2112-12/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | As described in bug 28358, the round-to-odd computations used in the libm functions that round their results to a narrower format can yield spurious underflow exceptions in the following circumstances: the narrowing only narrows the precision of the type and not the exponent range (i.e., it's narrowing _Float128 to _Float64x on x86_64, x86 or ia64), the architecture does after-rounding tininess detection (which applies to all those architectures), the result is inexact, tiny before rounding but not tiny after rounding (with the chosen rounding mode) for _Float64x (which is possible for narrowing mul, div and fma, not for narrowing add, sub or sqrt), so the underflow exception resulting from the toward-zero computation in _Float128 is spurious for _Float64x. Fixed by making ROUND_TO_ODD call feclearexcept (FE_UNDERFLOW) in the problem cases (as indicated by an extra argument to the macro); there is never any need to preserve underflow exceptions from this part of the computation, because the conversion of the round-to-odd value to the narrower type will underflow in exactly the cases in which the function should raise that exception, but it may be more efficient to avoid the extra manipulation of the floating-point environment when not needed. Tested for x86_64 and x86, and with build-many-glibcs.py.
* Redirect fma calls to __fma in libmJoseph Myers2021-09-1511-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | include/math.h has a mechanism to redirect internal calls to various libm functions, that can often be inlined by the compiler, to call non-exported __* names for those functions in the case when the calls aren't inlined, with the redirection being disabled when NO_MATH_REDIRECT. Add fma to the functions to which this mechanism is applied. At present, libm-internal fma calls (generally to __builtin_fma* functions) are only done when it's known the call will be inlined, with alternative code not relying on an fma operation being used in the caller otherwise. This patch is in preparation for adding the TS 18661 / C2X narrowing fma functions to glibc; it will be natural for the narrowing function implementations to call the underlying fma functions unconditionally, with this either being inlined or resulting in an __fma* call. (Using two levels of round-to-odd computation like that, in the case where there isn't an fma hardware instruction, isn't optimal but is certainly a lot simpler for the initial implementation than writing different narrowing fma implementations for all the various pairs of formats.) Tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by the patch (using <https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html> to fix installed library stripping in build-many-glibcs.py). Also tested for x86_64.
* Add narrowing square root functionsJoseph Myers2021-09-1020-1/+523
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
* Remove "Contributed by" linesSiddhesh Poyarekar2021-09-03201-247/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* Update math: redirect roundeven functionH.J. Lu2021-06-271-0/+1
| | | | | Redirect target specific roundeven functions for aarch64, ldbl-128ibm and riscv.
* Use GCC builtins for roundeven functions if desired.Shen-Ta Hsieh2021-06-274-0/+17
| | | | | | | | | | | | | This patch is using the corresponding GCC builtin for roundevenf, roundeven and roundevenl if the USE_FUNCTION_BUILTIN macros are defined to one in math-use-builtins.h. These builtin functions is supported since GCC 10. The code of the generic implementation is not changed. Signed-off-by: Shen-Ta Hsieh <ibmibmibm.tw@gmail.com> Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
* math: redirect roundeven functionShen-Ta Hsieh2021-06-275-1/+9
| | | | | | | This patch redirect roundeven function for futhermore changes. Signed-off-by: Shen-Ta Hsieh <ibmibmibm.tw@gmail.com> Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
* configure: Replaced obsolete AC_TRY_COMPILENaohiro Tamura2021-06-041-4/+4
| | | | | | | | | | | | | | | | | This patch replaced obsolete AC_TRY_COMPILE to AC_COMPILE_IFELSE or AC_PREPROC_IFELSE. It has been confirmed that GNU 'autoconf' 2.69 suppressed obsolete warnings, updated the following files: - configure - sysdeps/mach/configure - sysdeps/mach/hurd/configure - sysdeps/s390/configure - sysdeps/unix/sysv/linux/configure and didn't change the following files: - sysdeps/ieee754/ldbl-opt/configure - sysdeps/unix/sysv/linux/powerpc/configure Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* stdio-common: Remove _IO_vfwscanfFlorian Weimer2021-06-011-1/+0
| | | | | | | | | The symbol has never been exported, so no compatibility symbol is needed. Removing this file prevents ld from creation an exported symbol in case GLIBC_2_0 expands to a symbol version which does not have a local: *; directive in the symbol version map file. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* add workload traces for cbrtlPaul Zimmermann2021-05-101-0/+3
| | | | | | These workload traces cover the whole "long double" range. This patch was prepared with the help of Adhemerval Zanella. Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* Improve the accuracy of tgamma (BZ #26983)Paul Zimmermann2021-04-071-11/+26
| | | | | | | | | | | | With this patch, the maximal known error for tgamma is now reduced to 9 ulps for dbl-64, for all rounding modes. Since exhaustive testing is not possible for dbl-64, it might be that there are still cases with an error larger than 9 ulps, but all known cases are fixed (intensive tests were done to find cases with large errors). Tested on x86_64 and powerpc (and by Adhemerval Zanella on aarch64, arm, s390x, sparc, and i686). Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* Fix the inaccuracy of j0f/j1f/y0f/y1f [BZ #14469, #14470, #14471, #14472]Paul Zimmermann2021-04-023-70/+1021
| | | | | | | | | | | | | | | | | | | | | | | For j0f/j1f/y0f/y1f, the largest error for all binary32 inputs is reduced to at most 9 ulps for all rounding modes. The new code is enabled only when there is a cancellation at the very end of the j0f/j1f/y0f/y1f computation, or for very large inputs, thus should not give any visible slowdown on average. Two different algorithms are used: * around the first 64 zeros of j0/j1/y0/y1, approximation polynomials of degree 3 are used, computed using the Sollya tool (https://www.sollya.org/) * for large inputs, an asymptotic formula from [1] is used [1] Fast and Accurate Bessel Function Computation, John Harrison, Proceedings of Arith 19, 2009. Inputs yielding the new largest errors are added to auto-libm-test-in, and ulps are regenerated for various targets (thanks Adhemerval Zanella). Tested on x86_64 with --disable-multi-arch and on powerpc64le-linux-gnu. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* Move __isnanf128 to libc.soSiddhesh Poyarekar2021-03-303-1/+24
| | | | | | | | All of the isnan functions are in libc.so due to printf_fp, so move __isnanf128 there too for consistency. Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@ascii.art.br> Reviewed-by: Florian Weimer <fweimer@redhat.com>
* math: Remove mpa files (part 2) [BZ #15267]Wilco Dijkstra2021-03-1115-2452/+0
| | | | | | | | | Previous commit was missing deleted files in sysdeps/ieee754/dbl-64. Finally remove all mpa related files, headers, declarations, probes, unused tables and update makefiles. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Remove mpa files [BZ #15267]Wilco Dijkstra2021-03-115-7823/+0
| | | | | | | Finally remove all mpa related files, headers, declarations, probes, unused tables and update makefiles. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Remove slow paths from atan2 [BZ #15267]Wilco Dijkstra2021-03-112-294/+40
| | | | | | Remove slow paths from atan2. Add ULP annotations. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Remove slow paths from atan [BZ #15267]Wilco Dijkstra2021-03-113-181/+27
| | | | | | Remove slow paths from atan. Add ULP annotations. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Remove slow paths in tan [BZ #15267]Wilco Dijkstra2021-03-115-708/+81
| | | | | | | Remove slow paths in tan. Add ULP annotations. Merge 'number' into 'mynumber'. Remove unused entries from tan constants. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Remove slow paths from asin and acos [BZ #15267]Wilco Dijkstra2021-03-111-298/+43
| | | | | | | | | | | This patch series removes all remaining slow paths and related code. First asin/acos, tan, atan, atan2 implementations are updated, and the final patch removes the unused mpa files, headers and probes. Passes buildmanyglibc. Remove slow paths from asin/acos. Add ULP annotations based on previous slow path checks (which are approximate). Update AArch64 and x86_64 libm-test-ulps. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
* math: Add BZ#18980 fix back on dbl-64 coshAdhemerval Zanella2021-01-111-1/+2
| | | | | | | It is regression from 9e97f239eae1f2b1 (Remove dbl-64/wordsize-64 (part 2)) where is missed to add the BZ#18980 fix (9e97f239eae1f2b1). Checked on i686-linux-gnu.
* Remove dbl-64/wordsize-64 (part 2)Wilco Dijkstra2021-01-0734-1837/+422
| | | | | | | | Remove the wordsize-64 implementations by merging them into the main dbl-64 directory. The second patch just moves all wordsize-64 files and removes a few wordsize-64 uses in comments and Implies files. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* Remove dbl-64/wordsize-64Wilco Dijkstra2021-01-074-4/+31
| | | | | | | | | | Remove the wordsize-64 implementations by merging them into the main dbl-64 directory. The first patch adds special cases needed for 32-bit targets (FIX_INT_FP_CONVERT_ZERO and FIX_DBL_LONG_CONVERT_OVERFLOW) to the wordsize-64 versions. This has no effect on 64-bit targets since they don't define these macros. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* Drop nan-pseudo-number.h usage from testsSiddhesh Poyarekar2021-01-041-3/+1
| | | | | | | | | | Make the tests use TEST_COND_intel96 to decide on whether to build the unnormal tests instead of the macro in nan-pseudo-number.h and then drop the header inclusion. This unbreaks test runs on all architectures that do not have ldbl-96. Also drop the HANDLE_PSEUDO_NUMBERS macro since it is not used anywhere.
* Move generic nan-pseudo-number.h to ldbl-96Siddhesh Poyarekar2021-01-041-0/+31
| | | | | The concept of pseudo number formats only exists in the realm of the 96 bit long double format.
* Update copyright dates with scripts/update-copyrightsPaul Eggert2021-01-02475-475/+475
| | | | | | | | | | | | | | | | I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
* x86 long double: Consider pseudo numbers as signalingSiddhesh Poyarekar2020-12-301-3/+8
| | | | | | | Add support to treat pseudo-numbers specially and implement x86 version to consider all of them as signaling. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* ieee754: Remove unused __sin32 and __cos32Anssi Hannula2020-12-181-62/+0
| | | | | The __sin32 and __cos32 functions were only used in the now removed slow path of asin and acos.
* ieee754: Remove slow paths from asin and acosAnssi Hannula2020-12-181-61/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | asin and acos have slow paths for rounding the last bit that cause some calls to be 500-1500x slower than average calls. These slow paths are rare, a test of a trillion (1.000.000.000.000) random inputs between -1 and 1 showed 32870 slow calls for acos and 4473 for asin, with most occurrences between -1.0 .. -0.9 and 0.9 .. 1.0. The slow paths claim correct rounding and use __sin32() and __cos32() (which compare two result candidates and return the closest one) as the final step, with the second result candidate (res1) having a small offset applied from res. This suggests that res and res1 are intended to be 1 ULP apart (which makes sense for rounding), barring bugs, allowing us to pick either one and still remain within 1 ULP of the exact result. Remove the slow paths as the accuracy is better than 1 ULP even without them, which is enough for glibc. Also remove code comments claiming correctly rounded results. After slow path removal, checking the accuracy of 14.400.000.000 random asin() and acos() inputs showed only three incorrectly rounded (error > 0.5 ULP) results: - asin(-0x1.ee2b43286db75p-1) (0.500002 ULP, same as before) - asin(-0x1.f692ba202abcp-4) (0.500003 ULP, same as before) - asin(-0x1.9915e876fc062p-1) (0.50000000001 ULP, previously exact) The first two had the same error even before this commit, and they did not use the slow path at all. Checking 4934 known randomly found previously-slow-path asin inputs shows 25 calls with incorrectly rounded results, with a maximum error of 0.500000002 ULP (for 0x1.fcd5742999ab8p-1). The previous slow-path code rounded all these inputs correctly (error < 0.5 ULP). The observed average speed increase was 130x. Checking 36240 known randomly found previously-slow-path acos inputs shows 42 calls with incorrectly rounded results, with a maximum error of 0.500000008 ULP (for 0x1.f63845056f35ep-1). The previous "exact" slow-path code showed 34 calls with incorrectly rounded results, with the same maximum error of 0.500000008 ULP (for 0x1.f63845056f35ep-1). The observed average speed increase was 130x. The functions could likely be trimmed more while keeping acceptable accuracy, but this at least gets rid of the egregiously slow cases. Tested on x86_64.
* Remove tls.h inclusion from internal errno.hAdhemerval Zanella2020-11-131-3/+0
| | | | | | | | | | | | The tls.h inclusion is not really required and limits possible definition on more arch specific headers. This is a cleanup to allow inline functions on sysdep.h, more specifically on i386 and ia64 which requires to access some tls definitions its own. No semantic changes expected, checked with a build against all affected ABIs.
* math: Fix inaccuracy of j0f for x >= 2^127 when sin(x)+cos(x) is tinyPaul Zimmermann2020-08-071-1/+16
| | | | Checked on x86_64-linux-gnu and i686-linux-gnu.
* Use C2x return value from getpayload of non-NaN (bug 26073).Joseph Myers2020-07-066-0/+18
| | | | | | | | | | | | | | | In TS 18661-1, getpayload had an unspecified return value for a non-NaN argument, while C2x requires the return value -1 in that case. This patch implements the return value of -1. I don't think this is worth having a new symbol version that's an alias of the old one, although occasionally we do that in such cases where the new function semantics are a refinement of the old ones (to avoid programs relying on the new semantics running on older glibc versions but not behaving as intended). Tested for x86_64 and x86; also ran math/ tests for aarch64 and powerpc.
* New exp10f version without SVID compat wrapperAdhemerval Zanella2020-06-191-1/+15
| | | | | | | | | | | | | | | | | | | | | | | This patch changes the exp10f error handling semantics to only set errno according to POSIX rules. New symbol version is introduced at GLIBC_2.32. The old wrappers are kept for compat symbols. There are some outliers that need special handling: - ia64 provides an optimized implementation of exp10f that uses ia64 specific routines to set SVID compatibility. The new symbol version is aliased to the exp10f one. - m68k also provides an optimized implementation, and the new version uses it instead of the sysdeps/ieee754/flt32 one. - riscv and csky uses the generic template implementation that does not provide SVID support. For both cases a new exp10f version is not added, but rather the symbols version of the generic sysdeps/ieee754/flt32 is adjusted instead. Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu.
* math: Optimized generic exp10f with wrappersPaul Zimmermann2020-06-192-1/+199
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is inspired by expf and reuses its tables and internal functions. The error checks are inlined and errno setting is in separate tail called functions, but the wrappers are kept in this patch to handle the _LIB_VERSION==_SVID_ case. Double precision arithmetics is used which is expected to be faster on most targets (including soft-float) than using single precision and it is easier to get good precision result with it. Result for x86_64 (i7-4790K CPU @ 4.00GHz) are: Before new code: "exp10f": { "workload-spec2017.wrf (adapted)": { "duration": 4.0414e+09, "iterations": 1.00128e+08, "reciprocal-throughput": 26.6818, "latency": 54.043, "max-throughput": 3.74787e+07, "min-throughput": 1.85038e+07 } With new code: "exp10f": { "workload-spec2017.wrf (adapted)": { "duration": 4.11951e+09, "iterations": 1.23968e+08, "reciprocal-throughput": 21.0581, "latency": 45.4028, "max-throughput": 4.74876e+07, "min-throughput": 2.20251e+07 } Result for aarch64 (A72 @ 2GHz) are: Before new code: "exp10f": { "workload-spec2017.wrf (adapted)": { "duration": 4.62362e+09, "iterations": 3.3376e+07, "reciprocal-throughput": 127.698, "latency": 149.365, "max-throughput": 7.831e+06, "min-throughput": 6.69501e+06 } With new code: "exp10f": { "workload-spec2017.wrf (adapted)": { "duration": 4.29108e+09, "iterations": 6.6752e+07, "reciprocal-throughput": 51.2111, "latency": 77.3568, "max-throughput": 1.9527e+07, "min-throughput": 1.29271e+07 } Checked on x86_64-linux-gnu, powerpc64le-linux-gnu, aarch64-linux-gnu, and sparc64-linux-gnu.
* ieee754/dbl-64: Reduce the scope of temporary storage variablesVineet Gupta2020-06-157-223/+193
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This came to light when adding hard-flaot support to ARC glibc port without hardware sqrt support causing glibc build to fail: | ../sysdeps/ieee754/dbl-64/e_sqrt.c: In function '__ieee754_sqrt': | ../sysdeps/ieee754/dbl-64/e_sqrt.c:58:54: error: unused variable 'ty' [-Werror=unused-variable] | double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s; The reason being EMULV() macro uses the hardware provided __builtin_fma() variant, leaving temporary variables 'p, hx, tx, hy, ty' unused hence compiler warning and ensuing error. The intent of the patch was to fix that error, but EMULV is pervasive and used fair bit indirectly via othe rmacros, hence this patch. Functionally it should not result in code gen changes and if at all those would be better since the scope of those temporaries is greatly reduced now Built tested with aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf hppa-linux-gnu x86_64-linux-gnu arm-linux-gnueabihf riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64 powerpc-linux-gnu microblaze-linux-gnu nios2-linux-gnu hppa-linux-gnu Also as suggested by Joseph [1] used --strip and compared the libs with and w/o patch and they are byte-for-byte unchanged (with gcc 9). | for i in `find . -name libm-2.31.9000.so`; | do | echo $i; diff $i /SCRATCH/vgupta/gnu2/install/glibcs/$i ; echo $?; | done | ./aarch64-linux-gnu/lib64/libm-2.31.9000.so | 0 | ./arm-linux-gnueabi/lib/libm-2.31.9000.so | 0 | ./x86_64-linux-gnu/lib64/libm-2.31.9000.so | 0 | ./arm-linux-gnueabihf/lib/libm-2.31.9000.so | 0 | ./riscv64-linux-gnu-rv64imac-lp64/lib64/lp64/libm-2.31.9000.so | 0 | ./riscv64-linux-gnu-rv64imafdc-lp64/lib64/lp64/libm-2.31.9000.so | 0 | ./powerpc-linux-gnu/lib/libm-2.31.9000.so | 0 | ./microblaze-linux-gnu/lib/libm-2.31.9000.so | 0 | ./nios2-linux-gnu/lib/libm-2.31.9000.so | 0 | ./hppa-linux-gnu/lib/libm-2.31.9000.so | 0 | ./s390x-linux-gnu/lib64/libm-2.31.9000.so [1] https://sourceware.org/pipermail/libc-alpha/2019-November/108267.html
* ieee754: provide gcc builtins based generic fma functionsVineet Gupta2020-06-035-0/+24
| | | | Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* ieee754: provide gcc builtins based generic sqrt functionsVineet Gupta2020-06-032-6/+16
| | | | Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
* float128: use builtin_signbitf128 alwaysPaul E. Murphy2020-05-041-18/+1
| | | | | | | | | The minimum GCC version has been raised to 6.2 for building glibc. Therefore, follow the advice inside the implementation and remove the GCC < 6 codepath. Likewise, remove the hidden_proto as all internal usages should inline now.
* powerpc64le: blacklist broken GCC compilers (e.g GCC 7.5.0)Paul E. Murphy2020-04-301-12/+0
| | | | | | | | | | | GCC 7.5.0 (PR94200) will refuse to compile if both -mabi=% and -mlong-double-128 are passed on the command line. Surprisingly, it will work happily if the latter is not. For the sake of maintaining status quo, test for and blacklist such compilers. Tested with a GCC 8.3.1 and GCC 7.5.0 compiler for ppc64le. Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
* Rename __LONG_DOUBLE_USES_FLOAT128 to __LDOUBLE_REDIRECTS_TO_FLOAT128_ABIPaul E. Murphy2020-04-308-14/+11
| | | | | | | | | | | | | | | Improve the commentary to aid future developers who will stumble upon this novel, yet not always perfect, mechanism to support alternative formats for long double. Likewise, rename __LONG_DOUBLE_USES_FLOAT128 to __LDOUBLE_REDIRECTS_TO_FLOAT128_ABI now that development work has settled down. The command used was git grep -l __LONG_DOUBLE_USES_FLOAT128 ':!./ChangeLog*' | \ xargs sed -i 's/__LONG_DOUBLE_USES_FLOAT128/__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI/g' Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
* ldbl-128ibm: simplify iscanonical.hPaul E. Murphy2020-04-061-8/+2
| | | | | | | | | | | | | The test for enabling _Float128 or IEEE 128 long double can be greatly simplified knowing that there is no ibm128, thus we require no special cases, and everything is canonical. This reverts the changes to ldbl-128ibm iscanonical.h from commit 8dbfea3a2094798a52cebddde01d255483f49665 and extends the check for __NO_LONG_DOUBLE_MATH to include a check for float128 redirects to long double. Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>