|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables float128 support for x86_64 and x86. All GCC
versions that can build glibc provide the required support, but since
GCC 6 and before don't provide __builtin_nanq / __builtin_nansq, sNaN
tests and some tests of NaN payloads need to be disabled with such
compilers (this does not affect the generated glibc binaries at all,
just the tests). bits/floatn.h declares float128 support to be
available for GCC versions that provide the required libgcc support
(4.3 for x86_64, 4.4 for i386 GNU/Linux, 4.5 for i386 GNU/Hurd);
compilation-only support was present some time before then, but not
really useful without the libgcc functions.
fenv_private.h needed updating to avoid trying to put _Float128 values
in registers. I make no assertion of optimality of the
math_opt_barrier / math_force_eval definitions for this case; they are
simply intended to be sufficient to work correctly.
Tested for x86_64 and x86, with GCC 7 and GCC 6. (Testing for x32 was
compilation tests only with build-many-glibcs.py to verify the ABI
baseline updates. I have not done any testing for Hurd, although the
float128 support is enabled there as for GNU/Linux.)
* sysdeps/i386/Implies: Add ieee754/float128.
* sysdeps/x86_64/Implies: Likewise.
* sysdeps/x86/bits/floatn.h: New file.
* sysdeps/x86/float128-abi.h: Likewise.
* manual/math.texi (Mathematics): Document support for _Float128
on x86_64 and x86.
* sysdeps/i386/fpu/fenv_private.h: Include <bits/floatn.h>.
(math_opt_barrier): Do not put _Float128 values in floating-point
registers.
(math_force_eval): Likewise.
[__x86_64__] (SET_RESTORE_ROUNDF128): New macro.
* sysdeps/x86/fpu/Makefile [$(subdir) = math] (CPPFLAGS): Append
to Makefile variable.
* sysdeps/x86/fpu/e_sqrtf128.c: New file.
* sysdeps/x86/fpu/sfp-machine.h: Likewise. Based on libgcc.
* sysdeps/x86/math-tests.h: New file.
* math/libm-test-support.h (XFAIL_FLOAT128_PAYLOAD): New macro.
* math/libm-test-getpayload.inc (getpayload_test_data): Use
XFAIL_FLOAT128_PAYLOAD.
* math/libm-test-setpayload.inc (setpayload_test_data): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data):
Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes bugs 16561 and 16562, bad results of yn in overflow
cases in non-default rounding modes, both because an intermediate
overflow in the recurrence does not get detected if the result is not
an infinity and because an overflowing result may occur in the wrong
sign. The fix is to set FE_TONEAREST mode internally for the parts of
the function where such overflows can occur (which includes the call
to y1 - where yn is used to compute a Bessel function of order -1,
negating the result of y1 isn't correct for overflowing results in
directed rounding modes) and then compute an overflowing value in the
original rounding mode if the to-nearest result was an infinity.
Tested x86_64 and x86 and ulps updated accordingly. Also tested for
mips64 and powerpc32 to test the ldbl-128 and ldbl-128ibm changes.
(The tests for these bugs were added in my previous y1 patch, so the
only thing this patch has to do with the testsuite is enable yn
testing in all rounding modes.)
[BZ #16561]
[BZ #16562]
* sysdeps/ieee754/dbl-64/e_jn.c: Include <float.h>.
(__ieee754_yn): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c: Include <float.h>.
(__ieee754_ynf): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-128/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/ieee754/ldbl-96/e_jnl.c: Include <float.h>.
(__ieee754_ynl): Set FE_TONEAREST mode internally and then
recompute overflowing results in original rounding mode.
* sysdeps/i386/fpu/fenv_private.h [!__SSE2_MATH__]
(libc_feholdsetround_ctx): New macro.
* math/libm-test.inc (yn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps : Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The most common use case of math functions is with default rounding
mode, i.e. rounding to nearest. Setting and restoring rounding mode
is an unnecessary overhead for this, so I've added support for a
context, which does the set/restore only if the FP status needs a
change. The code is written such that only x86 uses these. Other
architectures should be unaffected by it, but would definitely benefit
if the set/restore has as much overhead relative to the rest of the
code, as the x86 bits do.
Here's a summary of the performance improvement due to these
improvements; I've only mentioned functions that use the set/restore
and have benchmark inputs for x86_64:
Before:
cos(): ITERS:4.69335e+08: TOTAL:28884.6Mcy, MAX:4080.28cy, MIN:57.562cy, 16248.6 calls/Mcy
exp(): ITERS:4.47604e+08: TOTAL:28796.2Mcy, MAX:207.721cy, MIN:62.385cy, 15543.9 calls/Mcy
pow(): ITERS:1.63485e+08: TOTAL:28879.9Mcy, MAX:362.255cy, MIN:172.469cy, 5660.86 calls/Mcy
sin(): ITERS:3.89578e+08: TOTAL:28900Mcy, MAX:704.859cy, MIN:47.583cy, 13480.2 calls/Mcy
tan(): ITERS:7.0971e+07: TOTAL:28902.2Mcy, MAX:1357.79cy, MIN:388.58cy, 2455.55 calls/Mcy
After:
cos(): ITERS:6.0014e+08: TOTAL:28875.9Mcy, MAX:364.283cy, MIN:45.716cy, 20783.4 calls/Mcy
exp(): ITERS:5.48578e+08: TOTAL:28764.9Mcy, MAX:191.617cy, MIN:51.011cy, 19071.1 calls/Mcy
pow(): ITERS:1.70013e+08: TOTAL:28873.6Mcy, MAX:689.522cy, MIN:163.989cy, 5888.18 calls/Mcy
sin(): ITERS:4.64079e+08: TOTAL:28891.5Mcy, MAX:6959.3cy, MIN:36.189cy, 16062.8 calls/Mcy
tan(): ITERS:7.2354e+07: TOTAL:28898.9Mcy, MAX:1295.57cy, MIN:380.698cy, 2503.7 calls/Mcy
So the improvements are:
cos: 27.9089%
exp: 22.6919%
pow: 4.01564%
sin: 19.1585%
tan: 1.96086%
The downside of the change is that it will have an adverse performance
impact on non-default rounding modes, but I think the tradeoff is
justified.
|