| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
|
|
|
|
|
|
|
| |
* All files with FSF copyright notices: Update copyright dates
using scripts/update-copyrights.
* locale/programs/charmap-kw.h: Regenerated.
* locale/programs/locfile-kw.h: Likewise.
|
| |
|
|
|
|
|
|
|
| |
* All files with FSF copyright notices: Update copyright dates
using scripts/update-copyrights.
* locale/programs/charmap-kw.h: Regenerated.
* locale/programs/locfile-kw.h: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
posix/wordexp-test.c used libc-internal.h for PTR_ALIGN_DOWN; similar
to what was done with libc-diag.h, I have split the definitions of
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and PTR_ALIGN_DOWN
to a new header, libc-pointer-arith.h.
It then occurred to me that the remaining declarations in libc-internal.h
are mostly to do with early initialization, and probably most of the
files including it, even in the core code, don't need it anymore. Indeed,
only 19 files actually need what remains of libc-internal.h. 23 others
need libc-diag.h instead, and 12 need libc-pointer-arith.h instead.
No file needs more than one of them, and 16 don't need any of them!
So, with this patch, libc-internal.h stops including libc-diag.h as
well as losing the pointer arithmetic macros, and all including files
are adjusted.
* include/libc-pointer-arith.h: New file. Define
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and
PTR_ALIGN_DOWN here.
* include/libc-internal.h: Definitions of above macros
moved from here. Don't include libc-diag.h anymore either.
* posix/wordexp-test.c: Include stdint.h and libc-pointer-arith.h.
Don't include libc-internal.h.
* debug/pcprofile.c, elf/dl-tunables.c, elf/soinit.c, io/openat.c
* io/openat64.c, misc/ptrace.c, nptl/pthread_clock_gettime.c
* nptl/pthread_clock_settime.c, nptl/pthread_cond_common.c
* string/strcoll_l.c, sysdeps/nacl/brk.c
* sysdeps/unix/clock_settime.c
* sysdeps/unix/sysv/linux/i386/get_clockfreq.c
* sysdeps/unix/sysv/linux/ia64/get_clockfreq.c
* sysdeps/unix/sysv/linux/powerpc/get_clockfreq.c
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c:
Don't include libc-internal.h.
* elf/get-dynamic-info.h, iconv/loop.c
* iconvdata/iso-2022-cn-ext.c, locale/weight.h, locale/weightwc.h
* misc/reboot.c, nis/nis_table.c, nptl_db/thread_dbP.h
* nscd/connections.c, resolv/res_send.c, soft-fp/fmadf4.c
* soft-fp/fmasf4.c, soft-fp/fmatf4.c, stdio-common/vfscanf.c
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
* sysdeps/ieee754/dbl-64/k_rem_pio2.c
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
* sysdeps/ieee754/flt-32/k_rem_pio2f.c
* sysdeps/ieee754/ldbl-128/k_tanl.c
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
* sysdeps/ieee754/ldbl-96/k_tanl.c, sysdeps/nptl/futex-internal.h:
Include libc-diag.h instead of libc-internal.h.
* elf/dl-load.c, elf/dl-reloc.c, locale/programs/locarchive.c
* nptl/nptl-init.c, string/strcspn.c, string/strspn.c
* malloc/malloc.c, sysdeps/i386/nptl/tls.h
* sysdeps/nacl/dl-map-segments.h, sysdeps/x86_64/atomic-machine.h
* sysdeps/unix/sysv/linux/spawni.c
* sysdeps/x86_64/nptl/tls.h:
Include libc-pointer-arith.h instead of libc-internal.h.
* elf/get-dynamic-info.h, sysdeps/nacl/dl-map-segments.h
* sysdeps/x86_64/atomic-machine.h:
Add multiple include guard.
|
| |
|
|
This is a new implementation for condition variables, required
after http://austingroupbugs.net/view.php?id=609 to fix bug 13165. In
essence, we need to be stricter in which waiters a signal or broadcast
is required to wake up; this couldn't be solved using the old algorithm.
ISO C++ made a similar clarification, so this also fixes a bug in
current libstdc++, for example.
We can't use the old algorithm anymore because futexes do not guarantee
to wake in FIFO order. Thus, when we wake, we can't simply let any
waiter grab a signal, but we need to ensure that one of the waiters
happening before the signal is woken up. This is something the previous
algorithm violated (see bug 13165).
There's another issue specific to condvars: ABA issues on the underlying
futexes. Unlike mutexes that have just three states, or semaphores that
have no tokens or a limited number of them, the state of a condvar is
the *order* of the waiters. A waiter on a semaphore can grab a token
whenever one is available; a condvar waiter must only consume a signal
if it is eligible to do so as determined by the relative order of the
waiter and the signal.
Therefore, this new algorithm maintains two groups of waiters: Those
eligible to consume signals (G1), and those that have to wait until
previous waiters have consumed signals (G2). Once G1 is empty, G2
becomes the new G1. 64b counters are used to avoid ABA issues.
This condvar doesn't yet use a requeue optimization (ie, on a broadcast,
waking just one thread and requeueing all others on the futex of the
mutex supplied by the program). I don't think doing the requeue is
necessarily the right approach (but I haven't done real measurements
yet):
* If a program expects to wake many threads at the same time and make
that scalable, a condvar isn't great anyway because of how it requires
waiters to operate mutually exclusive (due to the mutex usage). Thus, a
thundering herd problem is a scalability problem with or without the
optimization. Using something like a semaphore might be more
appropriate in such a case.
* The scalability problem is actually at the mutex side; the condvar
could help (and it tries to with the requeue optimization), but it
should be the mutex who decides how that is done, and whether it is done
at all.
* Forcing all but one waiter into the kernel-side wait queue of the
mutex prevents/avoids the use of lock elision on the mutex. Thus, it
prevents the only cure against the underlying scalability problem
inherent to condvars.
* If condvars use short critical sections (ie, hold the mutex just to
check a binary flag or such), which they should do ideally, then forcing
all those waiter to proceed serially with kernel-based hand-off (ie,
futex ops in the mutex' contended state, via the futex wait queues) will
be less efficient than just letting a scalable mutex implementation take
care of it. Our current mutex impl doesn't employ spinning at all, but
if critical sections are short, spinning can be much better.
* Doing the requeue stuff requires all waiters to always drive the mutex
into the contended state. This leads to each waiter having to call
futex_wake after lock release, even if this wouldn't be necessary.
[BZ #13165]
* nptl/pthread_cond_broadcast.c (__pthread_cond_broadcast): Rewrite to
use new algorithm.
* nptl/pthread_cond_destroy.c (__pthread_cond_destroy): Likewise.
* nptl/pthread_cond_init.c (__pthread_cond_init): Likewise.
* nptl/pthread_cond_signal.c (__pthread_cond_signal): Likewise.
* nptl/pthread_cond_wait.c (__pthread_cond_wait): Likewise.
(__pthread_cond_timedwait): Move here from pthread_cond_timedwait.c.
(__condvar_confirm_wakeup, __condvar_cancel_waiting,
__condvar_cleanup_waiting, __condvar_dec_grefs,
__pthread_cond_wait_common): New.
(__condvar_cleanup): Remove.
* npt/pthread_condattr_getclock.c (pthread_condattr_getclock): Adapt.
* npt/pthread_condattr_setclock.c (pthread_condattr_setclock):
Likewise.
* npt/pthread_condattr_getpshared.c (pthread_condattr_getpshared):
Likewise.
* npt/pthread_condattr_init.c (pthread_condattr_init): Likewise.
* nptl/tst-cond1.c: Add comment.
* nptl/tst-cond20.c (do_test): Adapt.
* nptl/tst-cond22.c (do_test): Likewise.
* sysdeps/aarch64/nptl/bits/pthreadtypes.h (pthread_cond_t): Adapt
structure.
* sysdeps/arm/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/x86/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nptl/internaltypes.h (COND_NWAITERS_SHIFT): Remove.
(COND_CLOCK_BITS): Adapt.
* sysdeps/nptl/pthread.h (PTHREAD_COND_INITIALIZER): Adapt.
* nptl/pthreadP.h (__PTHREAD_COND_CLOCK_MONOTONIC_MASK,
__PTHREAD_COND_SHARED_MASK): New.
* nptl/nptl-printers.py (CLOCK_IDS): Remove.
(ConditionVariablePrinter, ConditionVariableAttributesPrinter): Adapt.
* nptl/nptl_lock_constants.pysym: Adapt.
* nptl/test-cond-printers.py: Adapt.
* sysdeps/unix/sysv/linux/hppa/internaltypes.h (cond_compat_clear,
cond_compat_check_and_clear): Adapt.
* sysdeps/unix/sysv/linux/hppa/pthread_cond_timedwait.c: Remove file ...
* sysdeps/unix/sysv/linux/hppa/pthread_cond_wait.c
(__pthread_cond_timedwait): ... and move here.
* nptl/DESIGN-condvar.txt: Remove file.
* nptl/lowlevelcond.sym: Likewise.
* nptl/pthread_cond_timedwait.c: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S: Likewise.
|