| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines roundeven functions that round a floating-point
number to the nearest integer, in that floating-point type, with ties
rounding to even (whereas the round functions round ties away from
zero). As with other such functions, they raise no exceptions apart
from "invalid" for signaling NaNs. There was a previous user request
for this functionality in glibc in
<https://sourceware.org/ml/libc-help/2015-02/msg00005.html>.
This patch implements these functions for glibc. The implementations
use integer bit-manipulation (or roundeven on the high and low parts,
in the IBM long double case). It's possible that there may be faster
approaches on some architectures (in particular, on AArch64 the frintn
instruction should do exactly what's required); I'll leave it to
architecture maintainers or others interested to implement such
architecture-specific versions if desired. (Where architectures have
instructions to round to nearest integer in the current rounding mode,
implementations saving and restoring the rounding mode - and dealing
with exceptions if those instructions generate "inexact" - are also
possible, though their performance depends on the cost of manipulating
exceptions / rounding mode state.)
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(roundeven): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (roundeven): New
macro.
* math/Versions (roundeven): New libm symbol at version
GLIBC_2.25.
(roundevenf): Likewise.
(roundevenl): Likewise.
* math/Makefile (libm-calls): Add s_roundevenF.
* math/libm-test.inc (roundeven_test_data): New array.
(roundeven_test): New function.
(main): Call roundeven_test.
* math/test-tgmath.c (NCALLS): Increase to 134.
(F(compile_test)): Call roundeven.
(F(roundeven)): New function.
* manual/arith.texi (Rounding Functions): Document roundeven,
roundevenf and roundevenl.
* manual/libm-err-tab.pl (@all_functions): Add roundeven.
* include/math.h (roundeven): Use libm_hidden_proto.
* sysdeps/ieee754/dbl-64/s_roundeven.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_roundeven.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundevenf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
roundeven.
(CFLAGS-nldbl-roundeven.c): New variable.
* sysdeps/ieee754/ldbl-opt/nldbl-roundeven.c: New file.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
| |
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (llogb): Add
preprocessor indentation inside #if.
|
|
|
|
|
|
|
|
| |
In order to support float128 tests, the calls to snprintf, which does
not support the type __float128, are replaced with calls to
strfrom{f,d,l}.
Tested for powerpc64le, s390, and x64_64.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines fmaxmag and fminmag functions that return the
argument with maximum / minimum magnitude (acting like fmax / fmin if
the arguments have the same magnitude or either argument is a NaN).
These correspond to the IEEE 754-2008 operations maxNumMag and
minNumMag. This patch implements these functions for glibc. They are
implemented with type-generic templates. Tests are based on those for
fmax and fmin.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(fmaxmag): New declaration.
(fminmag): Likewise.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (fmaxmag): New
macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fminmag): Likewise.
* math/Versions (fmaxmag): New libm symbol at version GLIBC_2.25.
(fmaxmagf): Likewise.
(fmaxmagl): Likewise.
(fminmag): Likewise.
(fminmagf): Likewise.
(fminmagl): Likewise.
* math/Makefile (gen-libm-calls): Add s_fmaxmagF and s_fminmagF.
* math/s_fmaxmag_template.c: New file.
* math/s_fminmag_template.c: Likewise.
* math/libm-test.inc (fmaxmag_test_data): New array.
(fmaxmag_test): New function.
(fminmag_test_data): New array.
(fminmag_test): New function.
(main): Call fmaxmag_test and fminmag_test.
* math/test-tgmath.c (NCALLS): Increase to 132.
(F(compile_test)): Call fmaxmag and fminmag.
(F(fminmag)): New function.
(F(fmaxmag)): Likewise.
* manual/arith.texi (Misc FP Arithmetic): Document fminmag,
fminmagf, fminmagl, fmaxmag, fmaxmagf and fmaxmagl.
* manual/libm-err-tab.pl (@all_functions): Add fmaxmag and
fminmag.
* sysdeps/ieee754/ldbl-opt/nldbl-fmaxmag.c: New file.
* sysdeps/ieee754/ldbl-opt/nldbl-fminmag.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_fmaxmagl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_fminmagl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fmaxmag
and fminmag.
(CFLAGS-nldbl-fmaxmag.c): New variable.
(CFLAGS-nldbl-fminmag.c): Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines a macro FE_SNANS_ALWAYS_SIGNAL in <fenv.h>, to
indicate that the recommended practice regarding sNaNs (that
operations always produce a qNaN output with "invalid" exception, even
in the fmax / fmin / hypot / pow cases where a qNaN input would not
result in qNaN output) is followed.
Now that those functions with C99 special cases for NaNs have been
fixed not to apply those special cases to sNaN, only to qNaN, glibc
follows that recommended practice. This patch makes it define the
corresponding macro.
Since compiler optimizations may affect whether sNaNs behave as
expected and the macro relates to both language and library features,
it is only defined if __SUPPORT_SNAN__ is defined (which GCC defines
for -fsignaling-nans). It is also not defined if FE_INVALID is
undefined, since the recommended practice specifically refers to
raising the "invalid" exception, so it seems inappropriate to define
the macro for soft-float cases without support for exceptions.
(Further refinement would be possible in cases where bits/fenv.h is
shared by configurations both with and without exceptions support.)
Tested for x86_64 and x86, and also did compile-only testing for nios2
to cover the no-exceptions case.
* math/fenv.h
[__GLIBC_USE (IEC_60559_BFP_EXT) && FE_INVALID && __SUPPORT_SNAN__]
(FE_SNANS_ALWAYS_SIGNAL): New macro.
* math/test-fe-snans-always-signal.c: New file.
* math/Makefile (tests): Add test-fe-snans-always-signal.
(CFLAGS-test-fe-snans-always-signal.c): New variable.
* manual/arith.texi (Infinity and NaN): Document
FE_SNANS_ALWAYS_SIGNAL.
|
|
|
|
|
|
|
|
|
| |
This patch converts the wrapper scalbln (which set errno directly
rather than doing anything with __kernel_standard) to use the
type-generic template machinery, in the same way that has been done
for ldexp.
Tested for powerpc64le, s390, and x86_64.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various fmax and fmin function implementations mishandle sNaN
arguments:
(a) When both arguments are NaNs, the return value should be a qNaN,
but sometimes it is an sNaN if at least one argument is an sNaN.
(b) Under TS 18661-1 semantics, if either argument is an sNaN then the
result should be a qNaN (whereas if one argument is a qNaN and the
other is not a NaN, the result should be the non-NaN argument).
Various implementations treat sNaNs like qNaNs here.
This patch fixes the x86 and x86_64 versions (ignoring float and
double for 32-bit x86 given the inability to reliably avoid the sNaN
turning into a qNaN before it gets to the called function). Tests of
sNaN inputs to these functions are added.
Note on architecture versions I haven't changed for this issue:
AArch64 already gets this right (it uses a hardware instruction with
the correct semantics for both quiet and signaling NaNs) and does not
need changes. It's possible Alpha, IA64, SPARC might need changes
(this would be shown by the testsuite if so).
Tested for x86_64 and x86 (both i686 and i586 builds, to cover the
different x86 implementations).
[BZ #20947]
* sysdeps/i386/fpu/s_fmaxl.S (__fmaxl): Add the arguments when
either is a signaling NaN.
* sysdeps/i386/fpu/s_fminl.S (__fminl): Likewise. Make code
follow fmaxl more closely.
* sysdeps/i386/i686/fpu/s_fmaxl.S (__fmaxl): Add the arguments
when either is a signaling NaN.
* sysdeps/i386/i686/fpu/s_fminl.S (__fminl): Likewise.
* sysdeps/x86_64/fpu/s_fmax.S (__fmax): Likewise.
* sysdeps/x86_64/fpu/s_fmaxf.S (__fmaxf): Likewise.
* sysdeps/x86_64/fpu/s_fmaxl.S (__fmaxl): Likewise.
* sysdeps/x86_64/fpu/s_fmin.S (__fmin): Likewise.
* sysdeps/x86_64/fpu/s_fminf.S (__fminf): Likewise.
* sysdeps/x86_64/fpu/s_fminl.S (__fminl): Likewise.
* math/libm-test.inc (fmax_test_data): Add tests of sNaN inputs.
(fmin_test_data): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various fmax and fmin function implementations mishandle sNaN
arguments:
(a) When both arguments are NaNs, the return value should be a qNaN,
but sometimes it is an sNaN if at least one argument is an sNaN.
(b) Under TS 18661-1 semantics, if either argument is an sNaN then the
result should be a qNaN (whereas if one argument is a qNaN and the
other is not a NaN, the result should be the non-NaN argument).
Various implementations treat sNaNs like qNaNs here.
This patch fixes the generic implementations used in the absence of
architecture-specific versions.
Tested for mips64 and powerpc (together with testcases that I'll add
along with the x86_64 / x86 fixes).
[BZ #20947]
* math/s_fmax_template.c (M_DECL_FUNC (__fmax)): Add the arguments
when either is a signaling NaN.
* math/s_fmin_template.c (M_DECL_FUNC (__fmin)): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Information about whether the ABI of long double is the same as that
of double is split between bits/mathdef.h and bits/wordsize.h.
When the ABIs are the same, bits/mathdef.h defines
__NO_LONG_DOUBLE_MATH. In addition, in the case where the same glibc
binary supports both -mlong-double-64 and -mlong-double-128,
bits/wordsize.h defines __LONG_DOUBLE_MATH_OPTIONAL, along with
__NO_LONG_DOUBLE_MATH if this particular compilation is with
-mlong-double-64.
As part of the refactoring I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>, this
patch puts all that information in a single header,
bits/long-double.h. It is included from sys/cdefs.h alongside the
include of bits/wordsize.h, so other headers generally do not need to
include bits/long-double.h directly.
Previously, various bits/mathdef.h headers and bits/wordsize.h headers
had this long double information (including implicitly in some
bits/mathdef.h headers through not having the defines present in the
default version). After the patch, it's all in six bits/long-double.h
headers. Furthermore, most of those new headers are not
architecture-specific. Architectures with optional long double all
use the ldbl-opt sysdeps directory, either in the order (ldbl-64-128,
ldbl-opt, ldbl-128) or (ldbl-128ibm, ldbl-opt). Thus a generic header
for the case where long double = double, and headers in ldbl-128,
ldbl-96 and ldbl-opt, suffices to cover every architecture except for
cases where long double properties vary between different ABIs sharing
a set of installed headers; fortunately all the ldbl-opt cases share a
single compiler-predefined macro __LONG_DOUBLE_128__ that can be used
to tell whether this compilation is -mlong-double-64 or
-mlong-double-128.
The two cases where a set of headers is shared between ABIs with
different long double properties, MIPS (o32 has long double = double,
other ABIs use ldbl-128) and SPARC (32-bit has optional long double,
64-bit has required long double), need their own bits/long-double.h
headers.
As with bits/wordsize.h, multiple-include protection for this header
is generally implicit through the include guards on sys/cdefs.h, and
multiple inclusion is harmless in any case. There is one subtlety:
the header must not define __LONG_DOUBLE_MATH_OPTIONAL if
__NO_LONG_DOUBLE_MATH was defined before its inclusion, because doing
so breaks how sysdeps/ieee754/ldbl-opt/nldbl-compat.h defines
__NO_LONG_DOUBLE_MATH itself before including system headers. Subject
to keeping that working, it would be reasonable to move these macros
from defined/undefined #ifdef to always-defined 1/0 #if semantics, but
this patch does not attempt to do so, just rearranges where the macros
are defined.
After this patch, the only use of bits/mathdef.h is the alpha one for
modifying complex function ABIs for old GCC. Thus, all versions of
the header other than the default and alpha versions are removed, as
is the include from math.h.
Tested for x86_64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/long-double.h: New file.
* sysdeps/ieee754/ldbl-128/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-96/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-opt/bits/long-double.h: Likewise.
* sysdeps/mips/bits/long-double.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/long-double.h: Likewise.
* math/Makefile (headers): Add bits/long-double.h.
* misc/sys/cdefs.h: Include <bits/long-double.h>.
* stdlib/strtold.c: Include <bits/long-double.h> instead of
<bits/wordsize.h>.
* bits/mathdef.h [!_COMPLEX_H]: Do not allow inclusion.
[!__NO_LONG_DOUBLE_MATH]: Remove conditional code.
* math/math.h: Do not include <bits/mathdef.h>.
* sysdeps/aarch64/bits/mathdef.h: Remove file.
* sysdeps/alpha/bits/mathdef.h [!_COMPLEX_H]: Do not allow
inclusion.
* sysdeps/ia64/bits/mathdef.h: Remove file.
* sysdeps/m68k/m680x0/bits/mathdef.h: Likewise.
* sysdeps/mips/bits/mathdef.h: Likewise.
* sysdeps/powerpc/bits/mathdef.h: Likewise.
* sysdeps/s390/bits/mathdef.h: Likewise.
* sysdeps/sparc/bits/mathdef.h: Likewise.
* sysdeps/x86/bits/mathdef.h: Likewise.
* sysdeps/s390/s390-32/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]: Remove
conditional code.
* sysdeps/s390/s390-64/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
|
|
|
|
|
|
|
|
| |
This patch converts the wrapper log1p (which set errno directly rather
than doing anything with __kernel_standard) to use the type-generic
template machinery, in the same way that has been done for ilogb.
Tested for powerpc64le, s390, and x86_64.
|
|
|
|
|
| |
* math/Makefile ($(inst_libdir)/libm-$(version).a): New target.
* ($(inst_libdir)/libm.a): Fix rule to create the target only.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Install libm.a as linker script to avoid static link fail w/o passing
additional -lmvec option while building with GCC >= 6.1.
[BZ #20539]
* math/Makefile (install-lib-ldscripts): Add libm.a.
(install_subdir): Remove.
(install-others): Add.
($(inst_libdir)/libm.a): Add rule for installation as
linker script.
* Makerules (install-lib.a): Filter out install-lib-ldscripts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 generally defines libm functions taking sNaN arguments to
return qNaN and raise "invalid", even for the cases where a
corresponding qNaN argument would not result in a qNaN return. This
includes hypot with one argument being an infinity and the other being
an sNaN. This patch duly fixes hypot implementatations in glibc
(generic and powerpc) to ensure qNaN, computed by arithmetic on the
arguments, is returned in that case.
Various implementations do their checks for infinities and NaNs inline
by manipulating the representations of the arguments. For simplicity,
this patch just uses issignaling to check for sNaN arguments. This
could be inlined like the existing code (with due care about reversed
quiet NaN conventions, for implementations where that is relevant),
but given that all these checks are in cases where it's already known
at least one argument is not finite, which should be the uncommon
case, that doesn't seem worthwhile unless performance issues are
observed in practice.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20940]
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Do not
return Inf for arguments Inf and sNaN.
* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Likewise.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (TEST_INF_NAN): Do not return Inf
for arguments Inf and sNaN. When returning a NaN, compute it by
arithmetic on the arguments.
* sysdeps/powerpc/fpu/e_hypotf.c (TEST_INF_NAN): Likewise.
* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The x86_64/x86 powl implementations mishandle sNaN arguments, both by
returning sNaN in some cases (instead of doing arithmetic on the
arguments to produce the result when NaN arguments result in NaN
results) and by treating sNaN the same as qNaN for arguments (1, sNaN)
and (sNaN, 0), contrary to TS 18661-1 which requires those cases to
return qNaN instead of 1.
This patch makes the x86_64/x86 powl implementations follow TS 18661-1
semantics for sNaN arguments; sNaN tests are also added for pow.
Given the problems with testing float and double sNaN arguments on
32-bit x86 (sNaN tests disabled because the compiler may convert
unnecessarily to a qNaN when passing arguments), no changes are made
to the powf and pow implementations there.
Tested for x86_64 and x86.
[BZ #20916]
* sysdeps/i386/fpu/e_powl.S (__ieee754_powl): Do not return 1 for
arguments (sNaN, 0) or (1, sNaN). Do arithmetic on NaN arguments
to compute result.
* sysdeps/x86_64/fpu/e_powl.S (__ieee754_powl): Likewise.
* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The dbl-64 implementation of __ieee754_pow returns a NaN for pow
(qNaN, 0) when it should return 1. Normally this is covered up by the
wrappers ending up calling __kernel_standard which fixes up the result
for this case, but for -lieee the wrappers are bypassed and the bad
result gets through as a return value.
Now, the wrappers fixing this are dealing with variant error handling
that wants a result of NaN for pow (qNaN, 0), and only ever call
__kernel_standard for this case if NaN resulted from __ieee754_pow.
This leads to a question of whether the dbl-64 code might be
deliberately returning NaN in order to use those code paths. However,
I can find no sign that this is deliberate. If it were deliberate one
would expect other implementations to do the same, and would expect
the return of NaN to be very old, but it appears it came in by
accident when the present e_pow.c implementation replaced an fdlibm
implementation in 2001. So it appears to be unintended that this path
through the pow wrapper could be used at all.
So this patch fixes the implementation to return 1 in this case as
expected. This is consistent with all the other implementations. The
relevant path through the wrappers is now unreachable, so is removed
(which is the main motivation of this patch: to avoid that path
becoming accidentally reachable when implementing TS 18661-1 semantics
that pow (sNaN, 0) should return qNaN with "invalid" raised). Another
path that would require __ieee754_pow (0, 0) to return 0 is also
unreachable (as all implementations return 1, in accordance with C99
semantics), so is removed as well.
Note: we don't have anything set up to test -lieee, which in any case
is obsolescent (at some point we should remove the ability for new
programs to access _LIB_VERSION or define matherr and have it called
by glibc). So testing will be implicit through sNaN tests added when
making sNaN inputs work correctly for pow functions.
Tested for x86_64 and x86.
[BZ #20919]
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Do not return
NaN first argument when raised to power 0.
* math/w_pow.c (__pow): Do not check for NaN or zero results from
raising to power zero.
* math/w_powf.c (__powf): Likewise.
* math/w_powl.c (__powl): Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Do not handle
pow (0, 0) or pow (NaN, 0).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines llogb functions that are like ilogb except that
they return long int instead of int. Corresponding FP_LLOGB* macros
are defined, whose values are required to have the obvious
correspondence to those of the FP_ILOGB* macros.
This patch implements these functions and macros for glibc. llogb
uses the type-generic infrastructure, with an implementation similar
to the wrapper for ilogb but with additional conversion from FP_ILOGB*
to FP_LLOGB*; this approach avoids needing to modify or duplicate any
of the architecture-specific ilogb implementations. Tests are also
based on those for ilogb.
Ideally the llogb functions would alias the ilogb ones when long is
32-bit, but such aliasing requires the associated header declarations
of the different-type alias to be hidden, typically by defining macros
before including the header (see e.g. how
sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c defines lround to
__hidden_lround before including <math.h>). The infrastructure for
type-generic function implementations does not support defining such
macros at present (since C code can't define a macro whose name is
determined by other macros). So this patch leaves them as separate
functions (similar to e.g. scalbln and scalbn being separate in such a
case as well), but with the remapping of FP_ILOGB* to FP_LLOGB*
conditioned out in the case where it would be the identity map.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (llogb):
New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (llogb): New
macro.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (__FP_LONG_MAX):
New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_LLOGB0): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_LLOGBNAN): Likewise.
* math/Versions (llogb): New libm symbol at version GLIBC_2.25.
(llogbf): Likewise.
(llogbl): Likewise.
* math/Makefile (gen-libm-calls): Add w_llogbF.
(tests): Add test-fp-llogb-constants.
* math/w_llogb_template.c: New file. Based on
math/w_ilogb_template.c.
* math/libm-test.inc (llogb_test_data): New array.
(llogb_test): New function.
(main): Call llogb_test.
* math/test-fp-llogb-constants.c: New file. Based on
math/test-fp-ilogb-constants.c.
* math/test-tgmath-ret.c (llogb): New CHECK_RET_CONST call.
(do_test): Call check_return_llogb.
* math/test-tgmath.c (NCALLS): Increase to 126.
(F(compile_test)): Call llogb.
(F(llogb)): New function.
* manual/math.texi (Exponents and Logarithms): Document llogb,
llogbf, llogbl, FP_LLOGB0 and FP_LLOGBNAN.
* manual/libm-err-tab.pl (@all_functions): Add llogb.
* sysdeps/ieee754/ldbl-opt/nldbl-llogb.c: New file.
* sysdeps/ieee754/ldbl-opt/w_llogbl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add llogb.
(CFLAGS-nldbl-llogb.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Continuing the refactoring of bits/mathdef.h, this patch stops it
defining FP_ILOGB0 and FP_ILOGBNAN, moving the required information to
a new header bits/fp-logb.h.
There are only two possible values of each of those macros permitted
by ISO C. TS 18661-1 adds corresponding macros for llogb, and their
values are required to correspond to those of the ilogb macros in the
obvious way. Thus two boolean values - for which the same choices are
correct for most architectures - suffice to determine the value of all
these macros, and by defining macros for those boolean values in
bits/fp-logb.h we can then define the public FP_* macros in math.h and
avoid the present duplication of the associated feature test macro
logic.
This patch duly moves to bits/fp-logb.h defining __FP_LOGB0_IS_MIN and
__FP_LOGBNAN_IS_MIN. Default definitions of those to 0 are correct
for both architectures, while ia64, m68k and x86 get their own
versions of bits/fp-logb.h to reflect their use of values different
from the defaults.
The patch renders many copies of bits/mathdef.h trivial (needed only
to avoid the default __NO_LONG_DOUBLE_MATH). I'll revise
<https://sourceware.org/ml/libc-alpha/2016-11/msg00865.html>
accordingly so that it removes all bits/mathdef.h headers except the
default one and the alpha one, and arranges for the header to be
included only by complex.h as the only remaining use at that point
will be for the alpha ABI issues there.
Tested for x86_64 and x86. Also did compile-only testing with
build-many-glibcs.py (using glibc sources from before the commit that
introduced many build failures with undefined __GI___sigsetjmp).
* bits/fp-logb.h: New file.
* sysdeps/ia64/bits/fp-logb.h: Likewise.
* sysdeps/m68k/m680x0/bits/fp-logb.h: Likewise.
* sysdeps/x86/bits/fp-logb.h: Likewise.
* math/Makefile (headers): Add bits/fp-logb.h.
* math/math.h: Include <bits/fp-logb.h>.
[__USE_ISOC99] (FP_ILOGB0): Define based on __FP_LOGB0_IS_MIN.
[__USE_ISOC99] (FP_ILOGBNAN): Define based on __FP_LOGBNAN_IS_MIN.
* bits/mathdef.h (FP_ILOGB0): Remove.
(FP_ILOGBNAN): Likewise.
* sysdeps/aarch64/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/alpha/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/ia64/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/m68k/m680x0/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/mips/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/powerpc/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/s390/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/sparc/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/x86/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Continuing the refactoring of bits/mathdef.h, this patch moves the
FP_FAST_* definitions into a new bits/fp-fast.h header. Currently
this is only for FP_FAST_FMA*, but in future it would be the
appropriate place for the FP_FAST_* macros from TS 18661-1 as well.
The generic bits/mathdef.h header defines these macros based on
whether the compiler defines __FP_FAST_*. Most architecture-specific
headers, however, fail to do so, meaning that if the architecture (or
some particular processors) does in fact have fused operations, and
GCC knows to use them inline, the FP_FAST_* macros will still not be
defined.
By refactoring, this patch causes the generic version (based on
__FP_FAST_*) to be used in more cases, and so the macro definitions to
be more accurate. Architectures that already defined some or all of
these macros other than based on the predefines have their own
versions of fp-fast.h, which are arranged so they define FP_FAST_* if
either the architecture-specific conditions are true or __FP_FAST_*
are defined.
After this refactoring, various bits/mathdef.h headers for
architectures with long double = double are semantically identical to
the generic version. The patch removes those headers that are
redundant. (In fact two of the four removed were already redundant
before this patch because they did use __FP_FAST_*.)
Tested for x86_64 and x86, and compilation-only with
build-many-glibcs.py.
* bits/fp-fast.h: New file.
* sysdeps/aarch64/bits/fp-fast.h: Likewise.
* sysdeps/powerpc/bits/fp-fast.h: Likewise.
* math/Makefile (headers): Add bits/fp-fast.h.
* math/math.h: Include <bits/fp-fast.h>.
* bits/mathdef.h (FP_FAST_FMA): Remove.
(FP_FAST_FMAF): Likewise.
(FP_FAST_FMAL): Likewise.
* sysdeps/aarch64/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
* sysdeps/powerpc/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
* sysdeps/x86/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
(FP_FAST_FMAL): Likewise.
* sysdeps/arm/bits/mathdef.h: Remove file.
* sysdeps/hppa/fpu/bits/mathdef.h: Likewise.
* sysdeps/sh/sh4/bits/mathdef.h: Likewise.
* sysdeps/tile/bits/mathdef.h: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch converts the ilogb wrappers (which set errno directly
rather than doing anything with __kernel_standard) to use the
type-generic template machinery. This is intended as preparation for
adding llogb.
Tested for x86_64 and x86, and tested compile for other architectures
with build-many-glibcs.py.
* math/w_ilogb_template.c: New file. Based on math/w_ilogb.c.
* math/w_ilogb.c: Remove.
* math/w_ilogbf.c: Likewise.
* math/w_ilogbl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_ilogb.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_ilogbl.c: Likewise.
* math/Makefile (gen-libm-calls): Add w_ilogbF.
(libm-calls): Remove w_ilogbF.
* sysdeps/ieee754/ldbl-opt/math-type-macros-double.h
(LDOUBLE_ilogbl_libm_version): New macro.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayloadsig functions for glibc; these are
like the setpayload functions, but produce a signaling NaN instead of
a quiet NaN.
The substance of the implementation was included with the setpayload
implementation, so the new files here just need to wrap the main files
with different defines to build the new functions.
Because the functions store a signaling NaN via a pointer and the
libm-test macros choose a suitable initial value for the variable in
such a case by comparing with the expected value, the relevant macro
needs to clear exceptions after FE_INVALID may have been raised by
that comparison.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayloadsig): New declaration.
* math/Versions (setpayloadsig): New libm symbol at version
GLIBC_2.25.
(setpayloadsigf): Likewise.
(setpayloadsigl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadsigF.
* math/libm-test.inc (RUN_TEST_Ff_b1): Call feclearexcept
(FE_ALL_EXCEPT) after initializing EXTRA_VAR.
(setpayloadsig_test_data): New array.
(setpayloadsig_test): New function.
(main): Call setpayloadsig_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayloadsig,
setpayloadsigf and setpayloadsigl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayloadsig.c: New file.
* sysdeps/ieee754/flt-32/s_setpayloadsigf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayloadsig.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayloadsig.
(CFLAGS-nldbl-setpayloadsig.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At present, definitions of float_t and double_t are split among many
bits/mathdef.h headers.
For all but three architectures, these types are float and double.
Furthermore, if you assume __FLT_EVAL_METHOD__ to be defined, that
provides a more generic way of determining the correct values of these
typedefs. Defining these typedefs more generally based on
__FLT_EVAL_METHOD__ was previously proposed by Paul Eggert in
<https://sourceware.org/ml/libc-alpha/2012-02/msg00002.html>.
This patch refactors things in the way I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>. A new
header bits/flt-eval-method.h defines a single macro,
__GLIBC_FLT_EVAL_METHOD, which is then used by math.h to define
float_t and double_t. The default is based on __FLT_EVAL_METHOD__
(although actually a default to 0 would have the same effect for
current ports, because ports where values other than 0 or 16 are
possible all have their own headers).
To avoid changing the existing semantics in any case, including for
compilers not defining __FLT_EVAL_METHOD__, architecture-specific
files are then added for m68k, s390, x86 which replicate the existing
semantics. At least with __FLT_EVAL_METHOD__ values possible with
GCC, there should be no change to the choices of float_t and double_t
for any supported configuration.
Architecture maintainer notes:
* m68k: sysdeps/m68k/m680x0/bits/flt-eval-method.h always defines
__GLIBC_FLT_EVAL_METHOD to 2 to replicate the existing logic. But
actually GCC defines __FLT_EVAL_METHOD__ to 0 if TARGET_68040. It
might make sense to make the header prefer to base things on
__FLT_EVAL_METHOD__ if defined, like the x86 version, and so make
the choices of these types more accurate (with a NEWS entry as for
the other changes to these types on particular architectures).
* s390: sysdeps/s390/bits/flt-eval-method.h always defines
__GLIBC_FLT_EVAL_METHOD to 1 to replicate the existing logic. As
previously discussed, it might make sense in coordination with GCC
to eliminate the historic mistake, avoid excess precision in the
-fexcess-precision=standard case and make the typedefs match (with a
NEWS entry, again).
Tested for x86-64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/flt-eval-method.h: New file.
* sysdeps/m68k/m680x0/bits/flt-eval-method.h: Likewise.
* sysdeps/s390/bits/flt-eval-method.h: Likewise.
* sysdeps/x86/bits/flt-eval-method.h: Likewise.
* math/Makefile (headers): Add bits/flt-eval-method.h.
* math/math.h: Include <bits/flt-eval-method.h>.
[__USE_ISOC99] (float_t): Define based on __GLIBC_FLT_EVAL_METHOD.
[__USE_ISOC99] (double_t): Likewise.
* bits/mathdef.h (float_t): Remove.
(double_t): Likewise.
* sysdeps/aarch64/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/alpha/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/arm/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/hppa/fpu/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/ia64/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/m68k/m680x0/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/mips/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/powerpc/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/s390/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/sh/sh4/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/sparc/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/tile/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/x86/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ISO C requires that the value of FP_ILOGB0 must be INT_MIN or
-INT_MAX. In sysdeps/sh/sh4/bits/mathdef.h, it's 0x80000001; that is,
a positive unsigned value that would be -INT_MAX if converted to int,
which is not valid (there's no actual constraint on the type, but
whatever the type the integer value must be one of the two permitted,
and types other than int don't really make sense). This patch makes
the ABI-compatible change to (-0x7fffffff).
(The testcase handles positive and negative sign separately to avoid
any issues with implicit conversions that could result in e.g. INT_MIN
converted to uintmax_t wrongly passing.)
Tested (compilation only) with build-many-glibcs.py.
[BZ #20859]
* sysdeps/sh/sh4/bits/mathdef.h (FP_ILOGB0): Define to
(-0x7fffffff) instead of 0x80000001.
* math/test-fp-ilogb-constants.c: New file.
* math/Makefile (tests): Add test-fp-ilogb-constants.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The default (top-level) version of bits/mathdef.h defines float_t to
double. It is used on ColdFire, MicroBlaze, Nios II and SH3, all of
which define FLT_EVAL_METHOD to 0, so float_t should be float (and C11
requires a certain correspondence between these typedefs and
FLT_EVAL_METHOD values).
I proposed fixing this default in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00499.html>, with no
objections from architecture maintainers, and this patch makes that
fix. As noted in the NEWS entry added, this might affect the ABIs of
non-glibc libraries (ImageMagick has been mentioned in gcc-patches
discussion of the S/390 case - which is unaffected by this patch), but
as noted in my previous message, affected libraries would have
problems with -mfpmath=sse anyway on 32-bit x86.
A (compilation) testcase is added to verify the required
correspondence of typedefs to FLT_EVAL_METHOD values. This test is
built with -fexcess-precision=standard to avoid any issues with GCC 7
on S/390 providing a more accurate FLT_EVAL_METHOD definition in the
default (no excess precision) mode. (This will also be usable to test
a fix for the recently reported bug about these typedefs on x86_64
-mfpmath=387, as architecture-specific tests can be added that
It is entirely possible that the fixed default makes some
architecture-specific versions of bits/mathdef.h semantically
equivalent to the default version and so no longer required. I don't
intend to investigate that separately from the refactoring I proposed
in <https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>, which
will create as few header variants as possible for each group of
definitions.
Tested (compilation only) with build-many-glibcs.py.
[BZ #20855]
* bits/mathdef.h (float_t): Define to float.
* math/test-flt-eval-method.c: New file.
* math/Makefile (tests): Add test-flt-eval-method.
(CFLAGS-test-flt-eval-method.c): New variable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayload functions for glibc; these set a
number (pointed to by a function argument) to a quiet NaN with the
given payload, or to +0 if the given payload is not valid. The
implementations are structured to allow the substance of the
implementation to be shared with the setpayloadsig functions when
those are added.
The semantics in the TS are not entirely clear in the case where the
payload passed to the function is zero (see discussion on the WG14
reflector last month). This patch implements what seems the most
sensible interpretation, that -0 is never valid to give as the
payload, but +0 is valid in the case where the kind of NaN being
generated has its high mantissa bit set so payload 0 is actually
possible in such a NaN.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayload): New declaration.
* math/Versions (setpayload): New libm symbol at version
GLIBC_2.25.
(setpayloadf): Likewise.
(setpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadF.
* math/libm-test.inc (struct test_Ffp_b1_data): Rename to struct
test_Ff_b1_data.
(RUN_TEST_Ff_b1): New macro.
(RUN_TEST_LOOP_Ff_b1): Likewise.
(canonicalize_test_data): Update type.
(setpayload_test_data): New array.
(setpayload_test): New function.
(main): Call setpayload_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayload,
setpayloadf and setpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayload.c: New file.
* sysdeps/ieee754/dbl-64/s_setpayload_main.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_setpayload_main.c:
Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf.c: Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf_main.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayload.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayload.
(CFLAGS-nldbl-setpayload.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors some type-generic libm macros, in both math.h and
math_private.h, to be based on a common __MATH_TG macro rather than
all replicating similar logic to choose a function to call based on
the type of the argument.
This should serve to illustrate what I think float128 support for such
macros should look like: common macros such as __MATH_TG may need
different definitions depending on whether float128 is supported in
glibc, so that the individual macros themselves do not need
conditionals on float128 support.
Tested for x86_64, x86, mips64 and powerpc.
* math/math.h (__MATH_TG): New macro.
[__USE_ISOC99] (fpclassify): Define using __MATH_TG.
[__USE_ISOC99] (signbit): Likewise.
[__USE_ISOC99] (isfinite): Likewise.
[__USE_ISOC99] (isnan): Likewise.
[__USE_ISOC99] (isinf): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (issignaling): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__MATH_EVAL_FMT2): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): Define using
__MATH_TG and __MATH_EVAL_FMT2.
* sysdeps/generic/math_private.h (fabs_tg): Define using
__MATH_TG.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h
[!__NO_LONG_DOUBLE_MATH] (__iscanonicalf): New macro.
[!__NO_LONG_DOUBLE_MATH] (__iscanonical): Likewise.
[!__NO_LONG_DOUBLE_MATH] (iscanonical): Define using __MATH_TG.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h (__iscanonicalf): New
macro.
(__iscanonical): Likewise.
(iscanonical): Define using __MATH_TG.
|
|
|
|
| |
* math/test-tgmath2.c: Split up test function.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines SNAN macros for signaling NaN values, suitable for
use in static initializers. This patch adds them to glibc's <math.h>
(provided you are building with GCC 3.3 or later; no attempt is made
to provide any kind of nonconforming fallback for older compilers
without the __builtin_nans functions).
Tested for x86_64 and x86.
* math/math.h
[__GLIBC_USE (IEC_60559_BFP_EXT) && __GNUC_PREREQ (3, 3)] (SNANF):
New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT) && __GNUC_PREREQ (3, 3)] (SNAN):
Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT) && __GNUC_PREREQ (3, 3)] (SNANL):
Likewise.
* manual/arith.texi (Infinity and NaN): Document SNANF, SNAN and
SNANL.
* math/test-double.h (snan_value_MACRO): New macro.
* math/test-float.h (snan_value_MACRO): Likewise.
* math/test-ldouble.h (snan_value_MACRO): Likewise.
* math/libm-test.inc (issignaling_test_data): Add tests of
snan_value_MACRO.
|
|
|
|
|
|
|
|
|
|
| |
The test math/test-nan-overflow uses malloc without including
stdlib.h. On -Os builds for i486 the header inclusion order
is altered enough that the test fails to build because of the
warning which is turned into an error.
The obvious fix is to include stdlib.h since malloc is being
used directly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines canonicalize functions to produce a canonical
version of a floating-point representation. This patch implements
these functions for glibc.
As with the iscanonical macro, these functions are oriented to the
decimal floating-point case, where some values have both canonical and
noncanonical representations. However, the functions have a return
value that says whether they succeeded in storing a canonical result;
thus, they can fail for the case of an invalid representation (while
still not making any particular choice from among multiple equally
canonical valid representations of the same value). Since no
floating-point formats in glibc actually have noncanonical valid
representations, a type-generic implementation of these functions can
be used that expects iscanonical to return 0 only for invalid
representations. Now that iscanonical is used within libm.so,
libm_hidden_proto / libm_hidden_def are added for __iscanonicall.
The definition of these functions is intended to correspond to a
convertFormat operation to the same floating-point format. Thus, they
convert signaling NaNs to quiet NaNs, raising the "invalid" exception.
Such a conversion "should" produce "the canonical version of that
signaling NaN made quiet".
libm-test.inc is made to check NaN payloads for the output of these
functions, a new feature (at some point manipulation functions such as
fabs and copysign should have tests added that verify payload
preservation for them). As however some architectures may not follow
the recommended practice of preserving NaN payloads when converting a
signaling NaN to quiet, a new math-tests.h macro
SNAN_TESTS_PRESERVE_PAYLOAD is added, and defined to 0 for non-NAN2008
MIPS; any other architectures seeing test failures for lack of payload
preservation in this case should also define this macro to 0. (If any
cases arise where the sign isn't preserved either, those should have a
similar macro added.)
The ldbl-96 and ldbl-128ibm tests of iscanonical are renamed and
adapted to test canonicalizel as well on the same representations.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(canonicalize): New declaration.
* math/Versions (canonicalize): New libm symbol at version
GLIBC_2.25.
(canonicalizef): Likewise.
(canonicalizel): Likewise.
* math/Makefile (gen-libm-calls): Add s_canonicalizeF.
* math/s_canonicalize_template.c: New file.
* math/libm-test.inc: Update comment on functions tested and
testing of NaN payloads.
(TEST_NAN_PAYLOAD): New macro.
(NO_TEST_INLINE): Update value.
(XFAIL_TEST): Likewise.
(ERRNO_UNCHANGED): Likewise.
(ERRNO_EDOM): Likewise.
(ERRNO_ERANGE): Likewise.
(IGNORE_RESULT): Likewise.
(NON_FINITE): Likewise.
(TEST_SNAN): Likewise.
(NO_TEST_MATHVEC): Likewise.
(TEST_NAN_PAYLOAD_CANONICALIZE): New macro.
(check_float_internal): Check NaN payloads if TEST_NAN_PAYLOAD.
(struct test_Ffp_b1_data): New type.
(RUN_TEST_Ffp_b1): New macro.
(RUN_TEST_LOOP_Ffp_b1): Likewise.
(canonicalize_test_data): New array.
(canonicalize_test): New function.
(main): Call canonicalize_test.
* manual/arith.texi (FP Bit Twiddling): Document canonicalize,
canonicalizef and canonicalizel.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-opt/nldbl-canonicalize.c: New file.
* sysdeps/ieee754/ldbl-opt/s_canonicalizel.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
canonicalize.
(CFLAGS-nldbl-canonicalize.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c: Move
to ...
* sysdeps/ieee754/ldbl-128ibm/test-canonical-ldbl-128ibm.c:
... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Change
test-iscanonical-ldbl-128ibm to test-canonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-128ibm/include/bits/iscanonical.h: New
file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c (__iscanonicall):
Use libm_hidden_def.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Move to ...
* sysdeps/ieee754/ldbl-96/test-canonical-ldbl-96.c: ... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-96/Makefile (tests): Change
test-iscanonical-ldbl-96 to test-canonical-ldbl-96.
* sysdeps/ieee754/ldbl-96/include/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c (__iscanonicall): Use
libm_hidden_def.
* sysdeps/generic/math-tests.h (SNAN_TESTS_PRESERVE_PAYLOAD): New
macro.
* sysdeps/mips/math-tests.h [__mips_hard_float && !__mips_nan2008]
(SNAN_TESTS_PRESERVE_PAYLOAD): Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
| |
It is still common to include system header files in an extern "C"
block. This means that exiting <math.h>'s own extern "C" block
is not sufficient to get back to C++ mode. Use an extern "C++"
wrapper instead.
|
|
|
|
|
| |
This increases compatibility with C++ code which is forced to
compile with _GNU_SOURCE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the getpayload functions for glibc; these
extract the NaN payload (from an argument passed as a pointer, for
which corresponding libm-test support is added) and return it in the
same floating-point type. The return value of these functions is
unspecified for non-NaN arguments; the patch does the simplest thing
to implement, which is that the functions do not check whether the
argument is a NaN and just treat the relevant bits of the
representation as a payload regardless. A conversion from integer to
floating-point is used to produce the required return value, except in
the ldbl-128 case; as 128-bit integers are not supported for all
configurations using ldbl-128, the code constructs the required
floating-point representation of the return value directly instead.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(getpayload): New declaration.
* math/Versions (getpayload): New libm symbol at version
GLIBC_2.25.
(getpayloadf): Likewise.
(getpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_getpayloadF.
* math/libm-test.inc: Include <nan-high-order-bit.h>.
(struct test_f_f_data): Add comment.
(RUN_TEST_fp_f): New macro.
(RUN_TEST_LOOP_fp_f): Likewise.
(getpayload_test_data): New array.
(getpayload_test): New function.
(main): Call getpayload_test.
* math/gen-libm-test.pl (parse_args): Handle 'p' in argument
descriptor.
* manual/arith.texi (FP Bit Twiddling): Document getpayload,
getpayloadf and getpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_getpayload.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Likewise.
* sysdeps/ieee754/flt-32/s_getpayloadf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_getpayloadl.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In addition to the totalorder functions, TS 18661-1 defines
totalordermag functions, which do the same comparison but on the
absolute values of the arguments. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
In general the implementations are similar to but simpler than those
for the totalorder functions.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalordermag): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag):
New macro.
* math/Versions (totalordermag): New libm symbol at version
GLIBC_2.25.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
* math/Makefile (libm-calls): Add s_totalordermagF.
* math/libm-test.inc (totalordermag_test_data): New array.
(totalordermag_test): New function.
(main): Call totalordermag_test.
* math/test-tgmath.c (NCALLS): Increase to 125.
(F(compile_test)): Call totalordermag.
(F(totalordermag)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalordermag, totalordermagf and totalordermagl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalordermag.
(CFLAGS-nldbl-totalordermag.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Also test totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some of the complex arithmetic functions have the following pattern:
in some piece of code, one part of the input (real or imaginary,
depending on the function) is either infinite or NaN. Part of the
result is to be set to NaN in either case, and FE_INVALID raised only
if the relevant part of the input was infinite.
In such a case, there is no actual need for the conditional on the
type of the input, since subtracting the relevant part of the input
from itself will produce a NaN, with FE_INVALID only if the relevant
part of the input was infinite. This simplifies the code, and as a
quality-of-implementation matter also improves things by propagating
NaN payloads. (Right now these functions always raise FE_INVALID for
signaling NaN arguments because of the call to fpclassify - at least
unless glibc is built with -Os - but if fpclassify moves to using
integer arithmetic in future, doing arithmetic on the NaN argument
also ensures an exception for sNaNs.)
Tested for x86_64 and x86.
* math/s_ccosh_template.c (M_DECL_FUNC (__ccosh)): Instead of
raising FE_INVALID with feraisexcept in case where part of
argument is infinite, subtract that part of argument from itself.
* math/s_cexp_template.c (M_DECL_FUNC (__cexp)): Likewise.
* math/s_csin_template.c (M_DECL_FUNC (__csin)): Likewise.
* math/s_csinh_template.c (M_DECL_FUNC (__csinh)): Likewise.
|
|
|
|
|
|
|
|
| |
This patch adds more tests of totalorder for finite inputs.
Tested for x86_64, x86, mips64 and powerpc.
* math/libm-test.inc (totalorder_test_data): Add more tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines totalorder functions implementing the totalOrder
comparison operation from IEEE 754-2008. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
(The totalordermag functions will be added in a separate patch.)
The description of the totalOrder operation is complicated. However,
for IEEE interchange binary formats and the preferred quiet NaN
convention, what that complicated description means is that you
interpret the representation as a sign-magnitude integer (with -0
coming before +0) and do a <= comparison on that interpretation. For
finite values and infinities the ordering of the sign-magnitude
integers is just the same as the ordering of floating-point values, so
this extends that to all representations. (Different representations
of the same floating-point value - which includes same quantum in the
decimal case - must still be considered equal by this operation, but
that issue doesn't arise for IEEE interchange binary formats.) So the
complications are:
* When MIPS quiet NaN conventions are in use, the representation of
NaNs needs adjusting before making such an integer comparison. This
patch does this adjustment only when both arguments are NaNs, as
there's no need for it if only one is a NaN, and as long as both are
NaNs you can just flip the relevant bits without any problems from
this turning a NaN into an infinity.
* For the m68k version of ldbl-96, where the high mantissa bit is
"don't care" for infinities and NaNs, representations where it
differs must compare the same. Note: although the testcase for this
compiles, I have not actually tested on m68k.
* For ldbl-128ibm, the low part must be ignored when the high part is
NaN, and low parts of +0 and -0 must be considered the same whatever
the high part.
The new tests in libm-test.inc are the first tests there specifying
particular payloads for input NaNs. Separate tests are also added for
the ldbl-96 and ldbl-128ibm special cases where there are different
representations of the same value that must compare equal (which can't
be covered in libm-test.inc as that only specifies values, not
representations).
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalorder): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder):
New macro.
* math/Versions (totalorder): New libm symbol at version
GLIBC_2.25.
(totalorderf): Likewise.
(totalorderl): Likewise.
* math/Makefile (libm-calls): Add s_totalorderF.
* math/gen-libm-test.pl (parse_args): Escape quotes in test name
string.
* math/libm-test.inc (PAYLOAD_DIG): New macro.
(qnan_value_pl): Likewise.
(snan_value_pl): Likewise.
(qnan_value): Define using qnan_value_pl.
(snan_value): Define using snan_value_pl.
(struct test_ff_i_data): Add comment about which tests use this
structure.
(RUN_TEST_ff_b): New macro.
(RUN_TEST_LOOP_ff_b): Likewise.
(totalorder_test_data): New array.
(totalorder_test): New function.
(main): Call totalorder_test.
* math/test-tgmath.c (NCALLS): Increase to 122.
(F(compile_test)): Call totalorder.
(F(totalorder)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalorder, totalorderf and totalorderl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalorder.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalorder.
(CFLAGS-nldbl-totalorder.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-totalorderl-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c: New file.
* sysdeps/ieee754/ldbl-96/Makefile [$(subdir) = math] (tests): Add
test-totalorderl-ldbl-96.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some libm complex functions have code that computes M_NAN + M_NAN.
This is nonsensical; it's just equivalent to M_NAN, since it's a quiet
NaN (and the comments suggesting this raises an exception are
similarly wrong). This patch changes the code just to use M_NAN (and
removes the bogus comments). (Preferably, code should either
propagate an input NaN or do a computation that raises "invalid" and
generates a default NaN at the same time. There are various cases,
however, that currently raise "invalid" even for NaN inputs; I think
those are cases where "invalid" is optional in ISO C so a change to
whether it's raised would be OK, but they would still need more
careful consideration than the cases where such issues do not arise.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch).
* math/s_ccosh_template.c (M_DECL_FUNC (__ccosh)): Use M_NAN
instead of M_NAN + M_NAN.
* math/s_csinh_template.c (M_DECL_FUNC (__csinh)): Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
iseqsig, like other type-generic comparison macros, should behave like
a comparison operator in not removing excess range and precision from
its arguments (see C11 F.10.11). This patch implements this by making
definitions of iseqsig appropriately conditional on
__FLT_EVAL_METHOD__ (including support for TS 18661-3 values of that
macro), with a corresponding testcase (that failed for 32-bit x86 in
the absence of the math.h changes) being added. (Of course the
definitions may need reworking when float128 support is added, just as
with other type-generic macros.)
Tested for x86_64 and x86.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): Define
conditional on value of [__FLT_EVAL_METHOD__].
* math/test-iseqsig-excess-precision.c: New file.
* math/Makefile (tests): Add test-iseqsig-excess-precision.
|
|
|
|
|
|
|
|
|
|
| |
Microblaze, nios2, and tile do not support FE_INVALID and thus
define feraiseexcept as a empty macro. Include math-private.h
to get such definition.
Checked with a build for microblaze, nios2, and tilepro.
* math/s_iseqsig_template.c: Include math-private.h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 adds an iseqsig type-generic comparison macro to <math.h>.
This macro is like the == operator except that unordered operands
result in the "invalid" exception and errno being set to EDOM.
This patch implements this macro for glibc. Given the need to set
errno, this is implemented with out-of-line functions __iseqsigf,
__iseqsig and __iseqsigl (of which the last only exists at all if long
double is ABI-distinct from double, so no function aliases or compat
support are needed). The present patch ignores excess precision
issues; I intend to deal with those in a followup patch. (Like
comparison operators, type-generic comparison macros should *not*
convert operands to their semantic types but should preserve excess
range and precision, meaning that for some argument types and values
of FLT_EVAL_METHOD, an underlying function should be called for a
wider type than that of the arguments.)
The underlying functions are implemented with the type-generic
template machinery. Comparing x <= y && x >= y is sufficient in ISO C
to achieve an equality comparison with "invalid" raised for unordered
operands (and the results of those two comparisons can also be used to
tell whether errno needs to be set). However, some architectures have
GCC bugs meaning that unordered comparison instructions are used
instead of ordered ones. Thus, a mechanism is provided for
architectures to use an explicit call to feraiseexcept to raise
exceptions if required. If your architecture has such a bug you
should add a fix-fp-int-compare-invalid.h header for it, with a
comment pointing to the relevant GCC bug report; if such a GCC bug is
fixed, that header's contents should have a __GNUC_PREREQ conditional
added so that the workaround can eventually be removed for that
architecture.
Tested for x86_64, x86, mips64, arm and powerpc.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): New
macro.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(__iseqsig): New declaration.
* math/s_iseqsig_template.c: New file.
* math/Versions (__iseqsigf): New libm symbol at version
GLIBC_2.25.
(__iseqsig): Likewise.
(__iseqsigl): Likewise.
* math/libm-test.inc (iseqsig_test_data): New array.
(iseqsig_test): New function.
(main): Call iseqsig_test.
* math/Makefile (gen-libm-calls): Add s_iseqsigF.
* manual/arith.texi (FP Comparison Functions): Document iseqsig.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/generic/fix-fp-int-compare-invalid.h: New file.
* sysdeps/powerpc/fpu/fix-fp-int-compare-invalid.h: Likewise.
* sysdeps/x86/fpu/fix-fp-int-compare-invalid.h: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 adds an iscanonical classification macro to <math.h>.
The motivation for this is decimal floating-point, where some values
have both canonical and noncanonical encodings. For IEEE binary
interchange formats, all encodings are canonical. For x86/m68k
ldbl-96, and for ldbl-128ibm, there are encodings that do not
represent any valid value of the type; although formally iscanonical
does not need to handle trap representations (and so could just always
return 1), it seems useful, and in line with the description in the TS
of "representations that are extraneous to the floating-point model"
as being non-canonical (as well as "redundant representations of some
or all of its values"), for it to detect those representations and
return 0 for them.
This patch adds iscanonical to glibc. It goes in a header
<bits/iscanonical.h>, included under appropriate conditions in
<math.h>. The default header version just evaluates the argument
(converted to its semantic type, though current GCC will probably
discard that conversion and any exceptions resulting from it) and
returns 1. ldbl-96 and ldbl-128ibm then have versions of the header
that call a function __iscanonicall for long double (the sizeof-based
tests will of course need updating for float128 support, like other
such type-generic macro implementations). The ldbl-96 version of
__iscanonicall has appropriate conditionals to reflect the differences
in the m68k version of that format (where the high mantissa bit may be
either 0 or 1 when the exponent is 0 or 0x7fff). Corresponding tests
for those formats are added as well. Other architectures do not have
any new functions added because just returning 1 is correct for all
their floating-point formats.
Tested for x86_64, x86, mips64 (to test the default macro version) and
powerpc.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)]: Include
<bits/iscanonical.h>.
* bits/iscanonical.h: New file.
* math/s_iscanonicall.c: Likewise.
* math/Versions (__iscanonicall): New libm symbol at version
GLIBC_2.25.
* math/libm-test.inc (iscanonical_test_data): New array.
(iscanonical_test): New function.
(main): Call iscanonical_test.
* math/Makefile (headers): Add bits/iscanonical.h.
(type-ldouble-routines): Add s_iscanonicall.
* manual/arith.texi (Floating Point Classes): Document
iscanonical.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c:
Likewise.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Add
test-iscanonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Likewise.
* sysdeps/ieee754/ldbl-96/Makefile: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Floating-point classification macros are supposed to remove any excess
range or precision from their arguments. This patch fixes the
non-sNaN version of iszero to do so, by casting the argument to its
own type. (This will of course work only for standard-conforming
excess precision, not for what GCC does on 32-bit x86 by default where
the back end hides excess precision from the front end; the same
applies to most of the classification macros in that case, as showed
up when we made them use GCC built-in functions.)
(iseqsig will have the reverse issue, needing to ensure that when an
underlying function is used it's for a type wide enough not to remove
any excess precision, since comparison macros must not remove excess
precision.)
Tested for x86_64 and x86.
* math/math.h
[__GLIBC_USE (IEC_60559_BFP_EXT) && !__SUPPORT_SNAN__] (iszero):
Cast argument to its own type.
* math/test-iszero-excess-precision.c: New file.
* math/Makefile (tests): Add test-iszero-excess-precision.
(CFLAGS-test-iszero-excess-precision.c): New variable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 adds an iszero classification macro to <math.h>. This
patch implements it for glibc. There are no new underlying functions
in libm because the implementation uses fpclassify when sNaN support
is required and a direct comparison otherwise; any optimizations for
this macro should be done through adding __builtin_iszero in GCC and
using it in the header for suitable GCC versions, not through adding
other optimized inline or out-of-line versions to glibc.
Tested for x86_64 and x86.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (iszero): New
macro.
* math/libm-test.inc (iszero_test_data): New array.
(iszero_test): New function.
(main): Call iszero_test.
* manual/arith.texi (Floating Point Classes): Document iszero.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 adds an issubnormal classification macro to <math.h>. This
patch implements it for glibc. There are no new underlying functions
in libm because the implementation uses fpclassify; any optimizations
for this macro should be done through adding __builtin_subnormal in
GCC and using it in the header for suitable GCC versions, not through
adding other optimized inline or out-of-line versions to glibc.
The intended structure of the NEWS entry for <math.h> features from TS
18661-1 is like:
* New <math.h> features are added from TS 18661-1:2014:
- Nearest integer functions: roundeven, roundevenf, roundevenl.
- Comparison macros: iseqsig.
- Classification macros: iscanonical, issubnormal, iszero.
(that is, following the grouping of interfaces in TS 18661-1:2014,
with any group where any interfaces are new in glibc 2.25 being listed
like that).
Tested for x86_64 and x86.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (issubnormal): New
macro.
* math/libm-test.inc (issubnormal_test_data): New array.
(issubnormal_test): New function.
* manual/arith.texi (Floating Point Classes): Document
issubnormal.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
|
|
|
|
|
|
|
| |
This requires adding a macro to synthesize the call
to __strto*_nan. Since this is likely to be the only
usage ever for strto* functions in generated libm
calls, a dedicated macro is defined for it.
|
|
|
|
|
|
| |
Use the GCC builtin instead. With the exception of the
files built from a template, they are unused. This
is preparation for making the s_nanF objects generated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This one is a little more tricky since it is built both for
libm and libc, and exports multiple aliases.
To simplify aliasing, a new macro is introduced which handles
aliasing to two symbols. By default, it just applies
declare_mgen_alias to both target symbols.
Likewise, the makefile is tweaked a little to generate
templates for shared files too, and a new rule is added
to build m_*.c objects from the objpfx directory.
Verified there are no symbol or code changes using a script
to diff the *_ldexp* object files on s390x, aarch64, arm,
x86_64, and ppc64.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TS 18661-1 defines a type femode_t to represent the set of dynamic
floating-point control modes (such as the rounding mode and trap
enablement modes), and functions fegetmode and fesetmode to manipulate
those modes (without affecting other state such as the raised
exception flags) and a corresponding macro FE_DFL_MODE.
This patch series implements those interfaces for glibc. This first
patch adds the architecture-independent pieces, the x86 and x86_64
implementations, and the <bits/fenv.h> and ABI baseline updates for
all architectures so glibc keeps building and passing the ABI tests on
all architectures. Subsequent patches add the fegetmode and fesetmode
implementations for other architectures.
femode_t is generally an integer type - the same type as fenv_t, or as
the single element of fenv_t where fenv_t is a structure containing a
single integer (or the single relevant element, where it has elements
for both status and control registers) - except where architecture
properties or consistency with the fenv_t implementation indicate
otherwise. FE_DFL_MODE follows FE_DFL_ENV in whether it's a magic
pointer value (-1 cast to const femode_t *), a value that can be
distinguished from valid pointers by its high bits but otherwise
contains a representation of the desired register contents, or a
pointer to a constant variable (the powerpc case; __fe_dfl_mode is
added as an exported constant object, an alias to __fe_dfl_env).
Note that where architectures (that share a register between control
and status bits) gain definitions of new floating-point control or
status bits in future, the implementations of fesetmode for those
architectures may need updating (depending on whether the new bits are
control or status bits and what the implementation does with
previously unknown bits), just like existing implementations of
<fenv.h> functions that take care not to touch reserved bits may need
updating when the set of reserved bits changes. (As any new bits are
outside the scope of ISO C, that's just a quality-of-implementation
issue for supporting them, not a conformance issue.)
As with fenv_t, femode_t should properly include any software DFP
rounding mode (and for both fenv_t and femode_t I'd consider that
fragment of DFP support appropriate for inclusion in glibc even in the
absence of the rest of libdfp; hardware DFP rounding modes should
already be included if the definitions of which bits are status /
control bits are correct).
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500). Other architecture versions are untested.
* math/fegetmode.c: New file.
* math/fesetmode.c: Likewise.
* sysdeps/i386/fpu/fegetmode.c: Likewise.
* sysdeps/i386/fpu/fesetmode.c: Likewise.
* sysdeps/x86_64/fpu/fegetmode.c: Likewise.
* sysdeps/x86_64/fpu/fesetmode.c: Likewise.
* math/fenv.h: Update comment on inclusion of <bits/fenv.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fegetmode): New function
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetmode): Likewise.
* bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (femode_t): New
typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/aarch64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/alpha/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/arm/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/hppa/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/ia64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/m68k/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/microblaze/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/mips/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/nios2/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/powerpc/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__fe_dfl_mode): New variable
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/s390/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sh/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sparc/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/tile/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/x86/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* manual/arith.texi (FE_DFL_MODE): Document macro.
(fegetmode): Document function.
(fesetmode): Likewise.
* math/Versions (fegetmode): New libm symbol at version
GLIBC_2.25.
(fesetmode): Likewise.
* math/Makefile (libm-support): Add fegetmode and fesetmode.
(tests): Add test-femode and test-femode-traps.
* math/test-femode-traps.c: New file.
* math/test-femode.c: Likewise.
* sysdeps/powerpc/fpu/fenv_const.c (__fe_dfl_mode): Declare as
alias for __fe_dfl_env.
* sysdeps/powerpc/nofpu/fenv_const.c (__fe_dfl_mode): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fenv_const.c
(__fe_dfl_mode): Likewise.
* sysdeps/powerpc/Versions (__fe_dfl_mode): New libm symbol at
version GLIBC_2.25.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
|
|
|
|
|
|
|
|
| |
This is only used for the float and double variants.
Instead, just add it to the type specific list of files,
and remove all stubs, and remove the declaration from
math_private.h.
I verified x86_64, i486, ia64, m68k, and ppc64 build.
|
| |
|