about summary refs log tree commit diff
path: root/sysdeps/x86_64/fpu/e_powl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/x86_64/fpu/e_powl.S')
-rw-r--r--sysdeps/x86_64/fpu/e_powl.S433
1 files changed, 0 insertions, 433 deletions
diff --git a/sysdeps/x86_64/fpu/e_powl.S b/sysdeps/x86_64/fpu/e_powl.S
deleted file mode 100644
index 571c0a18d5..0000000000
--- a/sysdeps/x86_64/fpu/e_powl.S
+++ /dev/null
@@ -1,433 +0,0 @@
-/* ix87 specific implementation of pow function.
-   Copyright (C) 1996-2017 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, see
-   <http://www.gnu.org/licenses/>.  */
-
-#include <machine/asm.h>
-#include <x86_64-math-asm.h>
-
-	.section .rodata.cst8,"aM",@progbits,8
-
-	.p2align 3
-	.type one,@object
-one:	.double 1.0
-	ASM_SIZE_DIRECTIVE(one)
-	.type p2,@object
-p2:	.byte 0, 0, 0, 0, 0, 0, 0x10, 0x40
-	ASM_SIZE_DIRECTIVE(p2)
-	.type p63,@object
-p63:	.byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
-	ASM_SIZE_DIRECTIVE(p63)
-	.type p64,@object
-p64:	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x43
-	ASM_SIZE_DIRECTIVE(p64)
-	.type p78,@object
-p78:	.byte 0, 0, 0, 0, 0, 0, 0xd0, 0x44
-	ASM_SIZE_DIRECTIVE(p78)
-	.type pm79,@object
-pm79:	.byte 0, 0, 0, 0, 0, 0, 0, 0x3b
-	ASM_SIZE_DIRECTIVE(pm79)
-
-	.section .rodata.cst16,"aM",@progbits,16
-
-	.p2align 3
-	.type infinity,@object
-inf_zero:
-infinity:
-	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
-	ASM_SIZE_DIRECTIVE(infinity)
-	.type zero,@object
-zero:	.double 0.0
-	ASM_SIZE_DIRECTIVE(zero)
-	.type minf_mzero,@object
-minf_mzero:
-minfinity:
-	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
-mzero:
-	.byte 0, 0, 0, 0, 0, 0, 0, 0x80
-	ASM_SIZE_DIRECTIVE(minf_mzero)
-DEFINE_LDBL_MIN
-
-#ifdef PIC
-# define MO(op) op##(%rip)
-#else
-# define MO(op) op
-#endif
-
-	.text
-ENTRY(__ieee754_powl)
-	fldt	24(%rsp)	// y
-	fxam
-
-
-	fnstsw
-	movb	%ah, %dl
-	andb	$0x45, %ah
-	cmpb	$0x40, %ah	// is y == 0 ?
-	je	11f
-
-	cmpb	$0x05, %ah	// is y == ±inf ?
-	je	12f
-
-	cmpb	$0x01, %ah	// is y == NaN ?
-	je	30f
-
-	fldt	8(%rsp)		// x : y
-
-	fxam
-	fnstsw
-	movb	%ah, %dh
-	andb	$0x45, %ah
-	cmpb	$0x40, %ah
-	je	20f		// x is ±0
-
-	cmpb	$0x05, %ah
-	je	15f		// x is ±inf
-
-	cmpb	$0x01, %ah
-	je	31f		// x is NaN
-
-	fxch			// y : x
-
-	/* fistpll raises invalid exception for |y| >= 1L<<63.  */
-	fldl	MO(p63)		// 1L<<63 : y : x
-	fld	%st(1)		// y : 1L<<63 : y : x
-	fabs			// |y| : 1L<<63 : y : x
-	fcomip	%st(1), %st	// 1L<<63 : y : x
-	fstp	%st(0)		// y : x
-	jnc	2f
-
-	/* First see whether `y' is a natural number.  In this case we
-	   can use a more precise algorithm.  */
-	fld	%st		// y : y : x
-	fistpll	-8(%rsp)	// y : x
-	fildll	-8(%rsp)	// int(y) : y : x
-	fucomip	%st(1),%st	// y : x
-	je	9f
-
-	// If y has absolute value at most 0x1p-79, then any finite
-	// nonzero x will result in 1.  Saturate y to those bounds to
-	// avoid underflow in the calculation of y*log2(x).
-	fldl	MO(pm79)	// 0x1p-79 : y : x
-	fld	%st(1)		// y : 0x1p-79 : y : x
-	fabs			// |y| : 0x1p-79 : y : x
-	fcomip	%st(1), %st	// 0x1p-79 : y : x
-	fstp	%st(0)		// y : x
-	jnc	3f
-	fstp	%st(0)		// pop y
-	fldl	MO(pm79)	// 0x1p-79 : x
-	testb	$2, %dl
-	jnz	3f		// y > 0
-	fchs			// -0x1p-79 : x
-	jmp	3f
-
-9:	/* OK, we have an integer value for y.  Unless very small
-	   (we use < 4), use the algorithm for real exponent to avoid
-	   accumulation of errors.  */
-	fldl	MO(p2)		// 4 : y : x
-	fld	%st(1)		// y : 4 : y : x
-	fabs			// |y| : 4 : y : x
-	fcomip	%st(1), %st	// 4 : y : x
-	fstp	%st(0)		// y : x
-	jnc	3f
-	mov	-8(%rsp),%eax
-	mov	-4(%rsp),%edx
-	orl	$0, %edx
-	fstp	%st(0)		// x
-	jns	4f		// y >= 0, jump
-	fdivrl	MO(one)		// 1/x		(now referred to as x)
-	negl	%eax
-	adcl	$0, %edx
-	negl	%edx
-4:	fldl	MO(one)		// 1 : x
-	fxch
-
-	/* If y is even, take the absolute value of x.  Otherwise,
-	   ensure all intermediate values that might overflow have the
-	   sign of x.  */
-	testb	$1, %al
-	jnz	6f
-	fabs
-
-6:	shrdl	$1, %edx, %eax
-	jnc	5f
-	fxch
-	fabs
-	fmul	%st(1)		// x : ST*x
-	fxch
-5:	fld	%st		// x : x : ST*x
-	fabs			// |x| : x : ST*x
-	fmulp			// |x|*x : ST*x
-	shrl	$1, %edx
-	movl	%eax, %ecx
-	orl	%edx, %ecx
-	jnz	6b
-	fstp	%st(0)		// ST*x
-	LDBL_CHECK_FORCE_UFLOW_NONNAN
-	ret
-
-	/* y is ±NAN */
-30:	fldt	8(%rsp)		// x : y
-	fldl	MO(one)		// 1.0 : x : y
-	fucomip	%st(1),%st	// x : y
-	je	32f
-31:	/* At least one argument NaN, and result should be NaN.  */
-	faddp
-	ret
-32:	jc	31b
-	/* pow (1, NaN); check if the NaN signaling.  */
-	testb	$0x40, 31(%rsp)
-	jz	31b
-	fstp	%st(1)
-	ret
-
-	.align ALIGNARG(4)
-2:	// y is a large integer (absolute value at least 1L<<63).
-	// If y has absolute value at least 1L<<78, then any finite
-	// nonzero x will result in 0 (underflow), 1 or infinity (overflow).
-	// Saturate y to those bounds to avoid overflow in the calculation
-	// of y*log2(x).
-	fldl	MO(p78)		// 1L<<78 : y : x
-	fld	%st(1)		// y : 1L<<78 : y : x
-	fabs			// |y| : 1L<<78 : y : x
-	fcomip	%st(1), %st	// 1L<<78 : y : x
-	fstp	%st(0)		// y : x
-	jc	3f
-	fstp	%st(0)		// pop y
-	fldl	MO(p78)		// 1L<<78 : x
-	testb	$2, %dl
-	jz	3f		// y > 0
-	fchs			// -(1L<<78) : x
-	.align ALIGNARG(4)
-3:	/* y is a real number.  */
-	subq	$40, %rsp
-	cfi_adjust_cfa_offset (40)
-	fstpt	16(%rsp)	// x
-	fstpt	(%rsp)		// <empty>
-	call	HIDDEN_JUMPTARGET (__powl_helper)	// <result>
-	addq	$40, %rsp
-	cfi_adjust_cfa_offset (-40)
-	ret
-
-	// pow(x,±0) = 1, unless x is sNaN
-	.align ALIGNARG(4)
-11:	fstp	%st(0)		// pop y
-	fldt	8(%rsp)		// x
-	fxam
-	fnstsw
-	andb	$0x45, %ah
-	cmpb	$0x01, %ah
-	je	112f		// x is NaN
-111:	fstp	%st(0)
-	fldl	MO(one)
-	ret
-
-112:	testb	$0x40, 15(%rsp)
-	jnz	111b
-	fadd	%st(0)
-	ret
-
-	// y == ±inf
-	.align ALIGNARG(4)
-12:	fstp	%st(0)		// pop y
-	fldl	MO(one)		// 1
-	fldt	8(%rsp)		// x : 1
-	fabs			// abs(x) : 1
-	fucompp			// < 1, == 1, or > 1
-	fnstsw
-	andb	$0x45, %ah
-	cmpb	$0x45, %ah
-	je	13f		// jump if x is NaN
-
-	cmpb	$0x40, %ah
-	je	14f		// jump if |x| == 1
-
-	shlb	$1, %ah
-	xorb	%ah, %dl
-	andl	$2, %edx
-#ifdef PIC
-	lea	inf_zero(%rip),%rcx
-	fldl	(%rcx, %rdx, 4)
-#else
-	fldl	inf_zero(,%rdx, 4)
-#endif
-	ret
-
-	.align ALIGNARG(4)
-14:	fldl	MO(one)
-	ret
-
-	.align ALIGNARG(4)
-13:	fldt	8(%rsp)		// load x == NaN
-	fadd	%st(0)
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±inf
-15:	fstp	%st(0)		// y
-	testb	$2, %dh
-	jz	16f		// jump if x == +inf
-
-	// fistpll raises invalid exception for |y| >= 1L<<63, but y
-	// may be odd unless we know |y| >= 1L<<64.
-	fldl	MO(p64)		// 1L<<64 : y
-	fld	%st(1)		// y : 1L<<64 : y
-	fabs			// |y| : 1L<<64 : y
-	fcomip	%st(1), %st	// 1L<<64 : y
-	fstp	%st(0)		// y
-	jnc	16f
-	fldl	MO(p63)		// p63 : y
-	fxch			// y : p63
-	fprem			// y%p63 : p63
-	fstp	%st(1)		// y%p63
-
-	// We must find out whether y is an odd integer.
-	fld	%st		// y : y
-	fistpll	-8(%rsp)	// y
-	fildll	-8(%rsp)	// int(y) : y
-	fucomip %st(1),%st
-	ffreep	%st		// <empty>
-	jne	17f
-
-	// OK, the value is an integer, but is it odd?
-	mov	-8(%rsp), %eax
-	mov	-4(%rsp), %edx
-	andb	$1, %al
-	jz	18f		// jump if not odd
-	// It's an odd integer.
-	shrl	$31, %edx
-#ifdef PIC
-	lea	minf_mzero(%rip),%rcx
-	fldl	(%rcx, %rdx, 8)
-#else
-	fldl	minf_mzero(,%rdx, 8)
-#endif
-	ret
-
-	.align ALIGNARG(4)
-16:	fcompl	MO(zero)
-	fnstsw
-	shrl	$5, %eax
-	andl	$8, %eax
-#ifdef PIC
-	lea	inf_zero(%rip),%rcx
-	fldl	(%rcx, %rax, 1)
-#else
-	fldl	inf_zero(,%rax, 1)
-#endif
-	ret
-
-	.align ALIGNARG(4)
-17:	shll	$30, %edx	// sign bit for y in right position
-18:	shrl	$31, %edx
-#ifdef PIC
-	lea	inf_zero(%rip),%rcx
-	fldl	(%rcx, %rdx, 8)
-#else
-	fldl	inf_zero(,%rdx, 8)
-#endif
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±0
-20:	fstp	%st(0)		// y
-	testb	$2, %dl
-	jz	21f		// y > 0
-
-	// x is ±0 and y is < 0.  We must find out whether y is an odd integer.
-	testb	$2, %dh
-	jz	25f
-
-	// fistpll raises invalid exception for |y| >= 1L<<63, but y
-	// may be odd unless we know |y| >= 1L<<64.
-	fldl	MO(p64)		// 1L<<64 : y
-	fld	%st(1)		// y : 1L<<64 : y
-	fabs			// |y| : 1L<<64 : y
-	fcomip	%st(1), %st	// 1L<<64 : y
-	fstp	%st(0)		// y
-	jnc	25f
-	fldl	MO(p63)		// p63 : y
-	fxch			// y : p63
-	fprem			// y%p63 : p63
-	fstp	%st(1)		// y%p63
-
-	fld	%st		// y : y
-	fistpll	-8(%rsp)	// y
-	fildll	-8(%rsp)	// int(y) : y
-	fucomip	%st(1),%st
-	ffreep	%st		// <empty>
-	jne	26f
-
-	// OK, the value is an integer, but is it odd?
-	mov	-8(%rsp),%eax
-	mov	-4(%rsp),%edx
-	andb	$1, %al
-	jz	27f		// jump if not odd
-	// It's an odd integer.
-	// Raise divide-by-zero exception and get minus infinity value.
-	fldl	MO(one)
-	fdivl	MO(zero)
-	fchs
-	ret
-
-25:	fstp	%st(0)
-26:
-27:	// Raise divide-by-zero exception and get infinity value.
-	fldl	MO(one)
-	fdivl	MO(zero)
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±0 and y is > 0.  We must find out whether y is an odd integer.
-21:	testb	$2, %dh
-	jz	22f
-
-	// fistpll raises invalid exception for |y| >= 1L<<63, but y
-	// may be odd unless we know |y| >= 1L<<64.
-	fldl	MO(p64)		// 1L<<64 : y
-	fxch			// y : 1L<<64
-	fcomi	%st(1), %st	// y : 1L<<64
-	fstp	%st(1)		// y
-	jnc	22f
-	fldl	MO(p63)		// p63 : y
-	fxch			// y : p63
-	fprem			// y%p63 : p63
-	fstp	%st(1)		// y%p63
-
-	fld	%st		// y : y
-	fistpll	-8(%rsp)	// y
-	fildll	-8(%rsp)	// int(y) : y
-	fucomip %st(1),%st
-	ffreep	%st		// <empty>
-	jne	23f
-
-	// OK, the value is an integer, but is it odd?
-	mov	-8(%rsp),%eax
-	mov	-4(%rsp),%edx
-	andb	$1, %al
-	jz	24f		// jump if not odd
-	// It's an odd integer.
-	fldl	MO(mzero)
-	ret
-
-22:	fstp	%st(0)
-23:
-24:	fldl	MO(zero)
-	ret
-
-END(__ieee754_powl)
-strong_alias (__ieee754_powl, __powl_finite)