about summary refs log tree commit diff
path: root/sysdeps/powerpc/powerpc64
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/powerpc64')
-rw-r--r--sysdeps/powerpc/powerpc64/power4/Implies2
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/Makefile7
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/mpa.c214
3 files changed, 2 insertions, 221 deletions
diff --git a/sysdeps/powerpc/powerpc64/power4/Implies b/sysdeps/powerpc/powerpc64/power4/Implies
new file mode 100644
index 0000000000..a372141bb7
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/Implies
@@ -0,0 +1,2 @@
+powerpc/power4/fpu
+powerpc/power4
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
deleted file mode 100644
index 2d44f727a5..0000000000
--- a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
+++ /dev/null
@@ -1,7 +0,0 @@
-# Makefile fragment for POWER4/5/5+ platforms with FPU.
-
-ifeq ($(subdir),math)
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
-CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1
-CPPFLAGS-slowexp.c += -DUSE_LONG_DOUBLE_FOR_MP=1
-endif
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
deleted file mode 100644
index 1858c97407..0000000000
--- a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
+++ /dev/null
@@ -1,214 +0,0 @@
-
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2013 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-
-/* Define __mul and __sqr and use the rest from generic code.  */
-#define NO__MUL
-#define NO__SQR
-
-#include <sysdeps/ieee754/dbl-64/mpa.c>
-
-/* Multiply *X and *Y and store result in *Z.  X and Y may overlap but not X
-   and Z or Y and Z.  For P in [1, 2, 3], the exact result is truncated to P
-   digits.  In case P > 3 the error is bounded by 1.001 ULP.  */
-void
-__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  long i, i1, i2, j, k, k2;
-  long p2 = p;
-  double u, zk, zk2;
-
-  /* Is z=0?  */
-  if (__glibc_unlikely (X[0] * Y[0] == ZERO))
-    {
-      Z[0] = ZERO;
-      return;
-    }
-
-  /* Multiply, add and carry */
-  k2 = (p2 < 3) ? p2 + p2 : p2 + 3;
-  zk = Z[k2] = ZERO;
-  for (k = k2; k > 1;)
-    {
-      if (k > p2)
-	{
-	  i1 = k - p2;
-	  i2 = p2 + 1;
-	}
-      else
-	{
-	  i1 = 1;
-	  i2 = k;
-	}
-#if 1
-      /* Rearrange this inner loop to allow the fmadd instructions to be
-         independent and execute in parallel on processors that have
-         dual symmetrical FP pipelines.  */
-      if (i1 < (i2 - 1))
-	{
-	  /* Make sure we have at least 2 iterations.  */
-	  if (((i2 - i1) & 1L) == 1L)
-	    {
-	      /* Handle the odd iterations case.  */
-	      zk2 = x->d[i2 - 1] * y->d[i1];
-	    }
-	  else
-	    zk2 = 0.0;
-	  /* Do two multiply/adds per loop iteration, using independent
-	     accumulators; zk and zk2.  */
-	  for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2)
-	    {
-	      zk += x->d[i] * y->d[j];
-	      zk2 += x->d[i + 1] * y->d[j - 1];
-	    }
-	  zk += zk2;		/* Final sum.  */
-	}
-      else
-	{
-	  /* Special case when iterations is 1.  */
-	  zk += x->d[i1] * y->d[i1];
-	}
-#else
-      /* The original code.  */
-      for (i = i1, j = i2 - 1; i < i2; i++, j--)
-	zk += X[i] * Y[j];
-#endif
-
-      u = (zk + CUTTER) - CUTTER;
-      if (u > zk)
-	u -= RADIX;
-      Z[k] = zk - u;
-      zk = u * RADIXI;
-      --k;
-    }
-  Z[k] = zk;
-
-  int e = EX + EY;
-  /* Is there a carry beyond the most significant digit?  */
-  if (Z[1] == ZERO)
-    {
-      for (i = 1; i <= p2; i++)
-	Z[i] = Z[i + 1];
-      e--;
-    }
-
-  EZ = e;
-  Z[0] = X[0] * Y[0];
-}
-
-/* Square *X and store result in *Y.  X and Y may not overlap.  For P in
-   [1, 2, 3], the exact result is truncated to P digits.  In case P > 3 the
-   error is bounded by 1.001 ULP.  This is a faster special case of
-   multiplication.  */
-void
-__sqr (const mp_no *x, mp_no *y, int p)
-{
-  long i, j, k, ip;
-  double u, yk;
-
-  /* Is z=0?  */
-  if (__glibc_unlikely (X[0] == ZERO))
-    {
-      Y[0] = ZERO;
-      return;
-    }
-
-  /* We need not iterate through all X's since it's pointless to
-     multiply zeroes.  */
-  for (ip = p; ip > 0; ip--)
-    if (X[ip] != ZERO)
-      break;
-
-  k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
-
-  while (k > 2 * ip + 1)
-    Y[k--] = ZERO;
-
-  yk = ZERO;
-
-  while (k > p)
-    {
-      double yk2 = 0.0;
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-        {
-	  yk += X[lim] * X[lim];
-	  lim--;
-	}
-
-      /* In __mul, this loop (and the one within the next while loop) run
-         between a range to calculate the mantissa as follows:
-
-         Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
-		+ X[n] * Y[k]
-
-         For X == Y, we can get away with summing halfway and doubling the
-	 result.  For cases where the range size is even, the mid-point needs
-	 to be added separately (above).  */
-      for (i = k - p, j = p; i <= lim; i++, j--)
-	yk2 += X[i] * X[j];
-
-      yk += 2.0 * yk2;
-
-      u = (yk + CUTTER) - CUTTER;
-      if (u > yk)
-	u -= RADIX;
-      Y[k--] = yk - u;
-      yk = u * RADIXI;
-    }
-
-  while (k > 1)
-    {
-      double yk2 = 0.0;
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-        {
-	  yk += X[lim] * X[lim];
-	  lim--;
-	}
-
-      /* Likewise for this loop.  */
-      for (i = 1, j = k - 1; i <= lim; i++, j--)
-	yk2 += X[i] * X[j];
-
-      yk += 2.0 * yk2;
-
-      u = (yk + CUTTER) - CUTTER;
-      if (u > yk)
-	u -= RADIX;
-      Y[k--] = yk - u;
-      yk = u * RADIXI;
-    }
-  Y[k] = yk;
-
-  /* Squares are always positive.  */
-  Y[0] = 1.0;
-
-  int e = EX * 2;
-  /* Is there a carry beyond the most significant digit?  */
-  if (__glibc_unlikely (Y[1] == ZERO))
-    {
-      for (i = 1; i <= p; i++)
-	Y[i] = Y[i + 1];
-      e--;
-    }
-  EY = e;
-}