summary refs log tree commit diff
path: root/sysdeps/powerpc/powerpc64
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/powerpc64')
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_ceill.S6
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_floor.S2
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_floorf.S2
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_isnan.S2
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_llrint.S4
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_llrintf.S4
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_llround.S8
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_llroundf.S8
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_round.S10
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_roundf.S10
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_roundl.S4
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_trunc.S4
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_truncf.S4
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_truncl.S4
-rw-r--r--sysdeps/powerpc/powerpc64/hp-timing.c2
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c4
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c4
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memcmp.S114
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memcpy.S70
-rw-r--r--sysdeps/powerpc/powerpc64/power5+/fpu/s_llround.S10
-rw-r--r--sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S4
-rw-r--r--sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S2
-rw-r--r--sysdeps/powerpc/powerpc64/power6/memcpy.S76
-rw-r--r--sysdeps/powerpc/powerpc64/power6/wordcopy.c8
-rw-r--r--sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S2
-rw-r--r--sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S2
-rw-r--r--sysdeps/powerpc/powerpc64/power6x/fpu/s_llround.S10
-rw-r--r--sysdeps/powerpc/powerpc64/strlen.S10
-rw-r--r--sysdeps/powerpc/powerpc64/strncmp.S10
29 files changed, 200 insertions, 200 deletions
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_ceill.S b/sysdeps/powerpc/powerpc64/fpu/s_ceill.S
index bffac3962c..3ef7b9f174 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_ceill.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_ceill.S
@@ -69,7 +69,7 @@ ENTRY (__ceill)
 	mtfsf	0x01,fp11	/* restore previous rounding mode.  */
 	fnabs	fp1,fp1		/* if (x == 0.0)  */
 	blr			/* x = -0.0; */
-	
+
 /* The high double is > TWO52 so we need to round the low double and
    perhaps the high double.  In this case we have to round the low
    double and handle any adjustment to the high double that may be
@@ -93,7 +93,7 @@ ENTRY (__ceill)
 	beqlr-  cr0
 	mtfsfi	7,2		/* Set rounding mode toward +inf.  */
 	fdiv	fp8,fp1,fp13	/* x_high/TWO52  */
-	
+
 	bng-	cr6,.L6		/* if (x > 0.0)  */
 	fctidz	fp0,fp8
 	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
@@ -110,7 +110,7 @@ ENTRY (__ceill)
 	b	.L9
 .L6:				/* if (x < 0.0)  */
 	fctidz	fp0,fp8
-	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */	
+	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
 	bnl	cr5,.L7		/* if (x_low < 0.0)  */
 	fmr	fp3,fp1
 	fmr	fp4,fp2
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_floor.S b/sysdeps/powerpc/powerpc64/fpu/s_floor.S
index a8e79e9361..44bd83233b 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_floor.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_floor.S
@@ -48,7 +48,7 @@ EALIGN (__floor, 4, 0)
 	fnabs	fp1,fp1		/* if (x == 0.0)  */
 				/* x = -0.0; */
 .L9:
-	mtfsf	0x01,fp11	/* restore previous rounding mode.  */	
+	mtfsf	0x01,fp11	/* restore previous rounding mode.  */
 	blr
 	END (__floor)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_floorf.S b/sysdeps/powerpc/powerpc64/fpu/s_floorf.S
index f65e3b8a70..a0a22e7eb9 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_floorf.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_floorf.S
@@ -47,7 +47,7 @@ EALIGN (__floorf, 4, 0)
 	fnabs	fp1,fp1		/* if (x == 0.0)  */
 				/* x = -0.0; */
 .L9:
-	mtfsf	0x01,fp11	/* restore previous rounding mode.  */	
+	mtfsf	0x01,fp11	/* restore previous rounding mode.  */
 	blr
 	END (__floorf)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_isnan.S b/sysdeps/powerpc/powerpc64/fpu/s_isnan.S
index 3fd62ae51d..95eb81eef4 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_isnan.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_isnan.S
@@ -21,7 +21,7 @@
 
 /* int __isnan(x)  */
 	.machine power4
-EALIGN (__isnan, 4, 0)	
+EALIGN (__isnan, 4, 0)
 	CALL_MCOUNT 0
 	mffs	fp0
 	mtfsb0	4*cr6+lt /* reset_fpscr_bit (FPSCR_VE) */
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_llrint.S b/sysdeps/powerpc/powerpc64/fpu/s_llrint.S
index 82b8df41d4..7019347b52 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_llrint.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_llrint.S
@@ -20,14 +20,14 @@
 #include <math_ldbl_opt.h>
 
 /* long long int[r3] __llrint (double x[fp1])  */
-ENTRY (__llrint)	
+ENTRY (__llrint)
 	CALL_MCOUNT 0
 	fctid	fp13,fp1
 	stfd	fp13,-16(r1)
 	nop	/* Insure the following load is in a different dispatch group */
 	nop	/* to avoid pipe stall on POWER4&5.  */
 	nop
-	ld	r3,-16(r1)	
+	ld	r3,-16(r1)
 	blr
 	END (__llrint)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_llrintf.S b/sysdeps/powerpc/powerpc64/fpu/s_llrintf.S
index 3de36c22fa..467396722f 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_llrintf.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_llrintf.S
@@ -19,14 +19,14 @@
 #include <sysdep.h>
 
 /* long long int[r3] __llrintf (float x[fp1])  */
-ENTRY (__llrintf)	
+ENTRY (__llrintf)
 	CALL_MCOUNT 0
 	fctid	fp13,fp1
 	stfd	fp13,-16(r1)
 	nop	/* Insure the following load is in a different dispatch group */
 	nop	/* to avoid pipe stall on POWER4&5.  */
 	nop
-	ld	r3,-16(r1)	
+	ld	r3,-16(r1)
 	blr
 	END (__llrintf)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_llround.S b/sysdeps/powerpc/powerpc64/fpu/s_llround.S
index 286aae3d6a..54b8341b4e 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_llround.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_llround.S
@@ -25,13 +25,13 @@
 .LC1:	/* 0.5 */
 	.tc FD_3fe00000_0[TC],0x3fe0000000000000
 	.section	".text"
-	
+
 /* long long [r3] llround (double x [fp1])
-   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest 
+   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "round to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we can't use the PowerPC "round to Nearest" mode. Instead we set
    "round toward Zero" mode and round by adding +-0.5 before rounding
    to the integer value.
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_llroundf.S b/sysdeps/powerpc/powerpc64/fpu/s_llroundf.S
index b1083a81a6..25c61f2459 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_llroundf.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_llroundf.S
@@ -24,13 +24,13 @@
 .LC1:	/* 0.5 */
 	.tc FD_3fe00000_0[TC],0x3fe0000000000000
 	.section	".text"
-	
+
 /* long long [r3] llroundf (float x [fp1])
-   IEEE 1003.1 llroundf function.  IEEE specifies "roundf to the nearest 
+   IEEE 1003.1 llroundf function.  IEEE specifies "roundf to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "roundf to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "roundf to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we can't use the PowerPC "round to Nearest" mode. Instead we set
    "round toward Zero" mode and round by adding +-0.5 before rounding
    to the integer value.
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_round.S b/sysdeps/powerpc/powerpc64/fpu/s_round.S
index 022be84a28..3c7437a8f4 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_round.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_round.S
@@ -25,13 +25,13 @@
 .LC1:	/* 0.5 */
 	.tc FD_3fe00000_0[TC],0x3fe0000000000000
 	.section	".text"
-	
+
 /* double [fp1] round (double x [fp1])
-   IEEE 1003.1 round function.  IEEE specifies "round to the nearest 
+   IEEE 1003.1 round function.  IEEE specifies "round to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "Round to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "Round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we can't use the PowerPC "Round to Nearest" mode. Instead we set
    "Round toward Zero" mode and round by adding +-0.5 before rounding
    to the integer value.  */
@@ -63,7 +63,7 @@ EALIGN (__round, 4, 0)
 	fnabs	fp1,fp1		/* if (x == 0.0)  */
 				/* x = -0.0; */
 .L9:
-	mtfsf	0x01,fp11	/* restore previous rounding mode.  */	
+	mtfsf	0x01,fp11	/* restore previous rounding mode.  */
 	blr
 	END (__round)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_roundf.S b/sysdeps/powerpc/powerpc64/fpu/s_roundf.S
index dc50d1a77e..980a77bde0 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_roundf.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_roundf.S
@@ -24,13 +24,13 @@
 .LC1:	/* 0.5 */
 	.tc FD_3f000000_0[TC],0x3f00000000000000
 	.section	".text"
-	
+
 /* float [fp1] roundf  (float x [fp1])
-   IEEE 1003.1 round function.  IEEE specifies "round to the nearest 
+   IEEE 1003.1 round function.  IEEE specifies "round to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "Round to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "Round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we can't use the PowerPC "Round to Nearest" mode. Instead we set
    "Round toward Zero" mode and round by adding +-0.5 before rounding
    to the integer value.  */
@@ -62,7 +62,7 @@ EALIGN (__roundf, 4, 0)
 	fnabs	fp1,fp1		/* if (x == 0.0)  */
 				/* x = -0.0; */
 .L9:
-	mtfsf	0x01,fp11	/* restore previous rounding mode.  */	
+	mtfsf	0x01,fp11	/* restore previous rounding mode.  */
 	blr
 	END (__roundf)
 
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_roundl.S b/sysdeps/powerpc/powerpc64/fpu/s_roundl.S
index 5cc41c03ce..547b72150d 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_roundl.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_roundl.S
@@ -91,7 +91,7 @@ ENTRY (__roundl)
 	beqlr-  cr0
 	mtfsfi	7,1		/* Set rounding mode toward 0.  */
 	fdiv	fp8,fp1,fp13	/* x_high/TWO52  */
-	
+
 	bng-	cr6,.L6		/* if (x > 0.0)  */
 	fctidz	fp0,fp8
 	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
@@ -109,7 +109,7 @@ ENTRY (__roundl)
 	b	.L9
 .L6:				/* if (x < 0.0)  */
 	fctidz	fp0,fp8
-	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */	
+	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
 	bnl	cr5,.L7		/* if (x_low < 0.0)  */
 	fmr	fp3,fp1
 	fmr	fp4,fp2
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_trunc.S b/sysdeps/powerpc/powerpc64/fpu/s_trunc.S
index 5b018fb3eb..f123873666 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_trunc.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_trunc.S
@@ -23,10 +23,10 @@
 .LC0:	/* 2**52 */
 	.tc FD_43300000_0[TC],0x4330000000000000
 	.section	".text"
-	
+
 /* double [fp1] trunc (double x [fp1])
    IEEE 1003.1 trunc function.  IEEE specifies "trunc to the integer
-   value, in floating format, nearest to but no larger in magnitude 
+   value, in floating format, nearest to but no larger in magnitude
    then the argument."
    We set "round toward Zero" mode and trunc by adding +-2**52 then
    subtracting +-2**52.  */
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_truncf.S b/sysdeps/powerpc/powerpc64/fpu/s_truncf.S
index 9f35240241..5ea5f3d04a 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_truncf.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_truncf.S
@@ -22,10 +22,10 @@
 .LC0:	/* 2**23 */
 	.tc FD_4b000000_0[TC],0x4b00000000000000
 	.section	".text"
-	
+
 /* float [fp1] truncf (float x [fp1])
    IEEE 1003.1 trunc function.  IEEE specifies "trunc to the integer
-   value, in floating format, nearest to but no larger in magnitude 
+   value, in floating format, nearest to but no larger in magnitude
    then the argument."
    We set "round toward Zero" mode and trunc by adding +-2**23 then
    subtracting +-2**23.  */
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_truncl.S b/sysdeps/powerpc/powerpc64/fpu/s_truncl.S
index 03f45270a2..06fd7dbe4d 100644
--- a/sysdeps/powerpc/powerpc64/fpu/s_truncl.S
+++ b/sysdeps/powerpc/powerpc64/fpu/s_truncl.S
@@ -79,7 +79,7 @@ ENTRY (__truncl)
 	beqlr-  cr0
 	mtfsfi	7,1		/* Set rounding mode toward 0.  */
 	fdiv	fp8,fp1,fp13	/* x_high/TWO52  */
-	
+
 	bng-	cr6,.L6		/* if (x > 0.0)  */
 	fctidz	fp0,fp8
 	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
@@ -98,7 +98,7 @@ ENTRY (__truncl)
 .L6:				/* if (x < 0.0)  */
 	fctidz	fp0,fp8
 	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
-	fadd	fp8,fp8,fp8	/* tau++; Make tau even  */	
+	fadd	fp8,fp8,fp8	/* tau++; Make tau even  */
 	bnl	cr5,.L7		/* if (x_low < 0.0)  */
 	fmr	fp3,fp1
 	fmr	fp4,fp2
diff --git a/sysdeps/powerpc/powerpc64/hp-timing.c b/sysdeps/powerpc/powerpc64/hp-timing.c
index f54a5f879b..5073adb0e5 100644
--- a/sysdeps/powerpc/powerpc64/hp-timing.c
+++ b/sysdeps/powerpc/powerpc64/hp-timing.c
@@ -1,4 +1,4 @@
-/* Support for high precision, low overhead timing functions. 
+/* Support for high precision, low overhead timing functions.
    powerpc64 version.
    Copyright (C) 2005-2013 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c
index bd0f9f04f5..78bba57a28 100644
--- a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c
@@ -35,10 +35,10 @@ __sqrt (double x)		/* wrapper sqrt */
 #else
   if (__builtin_expect (_LIB_VERSION == _IEEE_, 0))
     return z;
-    
+
   if (__builtin_expect (x != x, 0))
     return z;
-    
+
   if  (__builtin_expect (x < 0.0, 0))
     return __kernel_standard (x, x, 26);	/* sqrt(negative) */
   else
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c
index 07c4dc1565..12d9f6273d 100644
--- a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c
@@ -38,10 +38,10 @@ __sqrtf (float x)		/* wrapper sqrtf */
 
   if (__builtin_expect (_LIB_VERSION == _IEEE_, 0))
     return z;
-    
+
   if (__builtin_expect (x != x, 0))
     return z;
-    
+
   if  (__builtin_expect (x < 0.0, 0))
     /* sqrtf(negative) */
     return (float) __kernel_standard ((double) x, (double) x, 126);
diff --git a/sysdeps/powerpc/powerpc64/power4/memcmp.S b/sysdeps/powerpc/powerpc64/power4/memcmp.S
index 6378ecb2d9..69caedc9ff 100644
--- a/sysdeps/powerpc/powerpc64/power4/memcmp.S
+++ b/sysdeps/powerpc/powerpc64/power4/memcmp.S
@@ -51,17 +51,17 @@ EALIGN (memcmp, 4, 0)
 /* If less than 8 bytes or not aligned, use the unaligned
    byte loop.  */
 	blt	cr1, L(bytealigned)
-	std	rWORD8,-8(r1)	
+	std	rWORD8,-8(r1)
 	cfi_offset(rWORD8,-8)
-	std	rWORD7,-16(r1)	
+	std	rWORD7,-16(r1)
 	cfi_offset(rWORD7,-16)
 	bne	L(unaligned)
 /* At this point we know both strings have the same alignment and the
    compare length is at least 8 bytes.  rBITDIF contains the low order
    3 bits of rSTR1 and cr5 contains the result of the logical compare
-   of rBITDIF to 0.  If rBITDIF == 0 then we are already double word 
+   of rBITDIF to 0.  If rBITDIF == 0 then we are already double word
    aligned and can perform the DWaligned loop.
-  
+
    Otherwise we know the two strings have the same alignment (but not
    yet DW).  So we can force the string addresses to the next lower DW
    boundary and special case this first DW word using shift left to
@@ -141,7 +141,7 @@ L(DWaligned):
 	beq	L(dP4)
 	bgt	cr1, L(dP3)
 	beq	cr1, L(dP2)
-		
+
 /* Remainder is 8 */
 	.align 4
 L(dP1):
@@ -150,7 +150,7 @@ L(dP1):
    (8-15 byte compare), we want to use only volatile registers.  This
    means we can avoid restoring non-volatile registers since we did not
    change any on the early exit path.  The key here is the non-early
-   exit path only cares about the condition code (cr5), not about which 
+   exit path only cares about the condition code (cr5), not about which
    register pair was used.  */
 	ld	rWORD5, 0(rSTR1)
 	ld	rWORD6, 0(rSTR2)
@@ -168,7 +168,7 @@ L(dP1e):
 	cmpld	cr6, rWORD5, rWORD6
 	bne	cr5, L(dLcr5)
 	bne	cr0, L(dLcr0)
-	
+
 	ldu	rWORD7, 32(rSTR1)
 	ldu	rWORD8, 32(rSTR2)
 	bne	cr1, L(dLcr1)
@@ -185,7 +185,7 @@ L(dP1x):
 	bne	L(d00)
 	li	rRTN, 0
 	blr
-		
+
 /* Remainder is 16 */
 	.align 4
 L(dP2):
@@ -226,7 +226,7 @@ L(dP2x):
 	bne	L(d00)
 	li	rRTN, 0
 	blr
-		
+
 /* Remainder is 24 */
 	.align 4
 L(dP3):
@@ -268,7 +268,7 @@ L(dP3x):
 	bne	L(d00)
 	li	rRTN, 0
 	blr
-	
+
 /* Count is a multiple of 32, remainder is 0 */
 	.align 4
 L(dP4):
@@ -311,8 +311,8 @@ L(dLoop3):
 	ldu	rWORD8, 32(rSTR2)
 	bne-	cr1, L(dLcr1)
 	cmpld	cr0, rWORD1, rWORD2
-	bdnz+	L(dLoop)	
-	
+	bdnz+	L(dLoop)
+
 L(dL4):
 	cmpld	cr1, rWORD3, rWORD4
 	bne	cr6, L(dLcr6)
@@ -327,7 +327,7 @@ L(d24):
 	bne	cr6, L(dLcr6)
 L(d14):
 	sldi.	r12, rN, 3
-	bne	cr5, L(dLcr5) 
+	bne	cr5, L(dLcr5)
 L(d04):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
@@ -338,7 +338,7 @@ L(d04):
    shift right double to eliminate bits beyond the compare length.  */
 L(d00):
 	ld	rWORD1, 8(rSTR1)
-	ld	rWORD2, 8(rSTR2) 
+	ld	rWORD2, 8(rSTR2)
 	srd	rWORD1, rWORD1, rN
 	srd	rWORD2, rWORD2, rN
 	cmpld	cr5, rWORD1, rWORD2
@@ -378,22 +378,22 @@ L(dLcr5x):
 	bgtlr	cr5
 	li	rRTN, -1
 	blr
-	
+
 	.align 4
 L(bytealigned):
 	mtctr   rN	/* Power4 wants mtctr 1st in dispatch group */
 	beq-	cr6, L(zeroLength)
 
 /* We need to prime this loop.  This loop is swing modulo scheduled
-   to avoid pipe delays.  The dependent instruction latencies (load to 
+   to avoid pipe delays.  The dependent instruction latencies (load to
    compare to conditional branch) is 2 to 3 cycles.  In this loop each
    dispatch group ends in a branch and takes 1 cycle.  Effectively
-   the first iteration of the loop only serves to load operands and 
-   branches based on compares are delayed until the next loop. 
+   the first iteration of the loop only serves to load operands and
+   branches based on compares are delayed until the next loop.
 
    So we must precondition some registers and condition codes so that
    we don't exit the loop early on the first iteration.  */
-   
+
 	lbz	rWORD1, 0(rSTR1)
 	lbz	rWORD2, 0(rSTR2)
 	bdz-	L(b11)
@@ -413,7 +413,7 @@ L(bLoop):
 
 	cmpld	cr6, rWORD5, rWORD6
 	bdz-	L(b3i)
-	
+
 	lbzu	rWORD3, 1(rSTR1)
 	lbzu	rWORD4, 1(rSTR2)
 	bne-	cr1, L(bLcr1)
@@ -427,10 +427,10 @@ L(bLoop):
 
 	cmpld	cr1, rWORD3, rWORD4
 	bdnz+	L(bLoop)
-	
+
 /* We speculatively loading bytes before we have tested the previous
    bytes.  But we must avoid overrunning the length (in the ctr) to
-   prevent these speculative loads from causing a segfault.  In this 
+   prevent these speculative loads from causing a segfault.  In this
    case the loop will exit early (before the all pending bytes are
    tested.  In this case we must complete the pending operations
    before returning.  */
@@ -474,14 +474,14 @@ L(bx56):
 	nop
 L(b12):
 	bne-	cr0, L(bx12)
-L(bx34):	
+L(bx34):
 	sub	rRTN, rWORD3, rWORD4
 	blr
 L(b11):
 L(bx12):
 	sub	rRTN, rWORD1, rWORD2
 	blr
-	.align 4 
+	.align 4
 L(zeroLengthReturn):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
@@ -493,9 +493,9 @@ L(zeroLength):
 /* At this point we know the strings have different alignment and the
    compare length is at least 8 bytes.  rBITDIF contains the low order
    3 bits of rSTR1 and cr5 contains the result of the logical compare
-   of rBITDIF to 0.  If rBITDIF == 0 then rStr1 is double word 
+   of rBITDIF to 0.  If rBITDIF == 0 then rStr1 is double word
    aligned and can perform the DWunaligned loop.
-  
+
    Otherwise we know that rSTR1 is not already DW aligned yet.
    So we can force the string addresses to the next lower DW
    boundary and special case this first DW word using shift left to
@@ -515,14 +515,14 @@ L(zeroLength):
 #define rE		r0	/* Right rotation temp for rWORD6.  */
 #define rG		r12	/* Right rotation temp for rWORD8.  */
 L(unaligned):
-	std	r29,-24(r1)	
+	std	r29,-24(r1)
 	cfi_offset(r29,-24)
 	clrldi	rSHL, rSTR2, 61
 	beq-	cr6, L(duzeroLength)
-	std	r28,-32(r1)	
+	std	r28,-32(r1)
 	cfi_offset(r28,-32)
 	beq	cr5, L(DWunaligned)
-	std	r27,-40(r1)	
+	std	r27,-40(r1)
 	cfi_offset(r27,-40)
 /* Adjust the logical start of rSTR2 ro compensate for the extra bits
    in the 1st rSTR1 DW.  */
@@ -530,19 +530,19 @@ L(unaligned):
 /* But do not attempt to address the DW before that DW that contains
    the actual start of rSTR2.  */
 	clrrdi	rSTR2, rSTR2, 3
-	std	r26,-48(r1)	
+	std	r26,-48(r1)
 	cfi_offset(r26,-48)
 /* Compute the left/right shift counts for the unalign rSTR2,
-   compensating for the logical (DW aligned) start of rSTR1.  */ 
+   compensating for the logical (DW aligned) start of rSTR1.  */
 	clrldi	rSHL, r27, 61
-	clrrdi	rSTR1, rSTR1, 3	
-	std	r25,-56(r1)	
+	clrrdi	rSTR1, rSTR1, 3
+	std	r25,-56(r1)
 	cfi_offset(r25,-56)
 	sldi	rSHL, rSHL, 3
 	cmpld	cr5, r27, rSTR2
 	add	rN, rN, rBITDIF
 	sldi	r11, rBITDIF, 3
-	std	r24,-64(r1)	
+	std	r24,-64(r1)
 	cfi_offset(r24,-64)
 	subfic	rSHR, rSHL, 64
 	srdi	rTMP, rN, 5	/* Divide by 32 */
@@ -618,16 +618,16 @@ L(duPs4):
    compare length is at least 8 bytes.  */
 	.align 4
 L(DWunaligned):
-	std	r27,-40(r1)	
+	std	r27,-40(r1)
 	cfi_offset(r27,-40)
 	clrrdi	rSTR2, rSTR2, 3
-	std	r26,-48(r1)	
+	std	r26,-48(r1)
 	cfi_offset(r26,-48)
 	srdi	rTMP, rN, 5	/* Divide by 32 */
-	std	r25,-56(r1)	
+	std	r25,-56(r1)
 	cfi_offset(r25,-56)
 	andi.	rBITDIF, rN, 24	/* Get the DW remainder */
-	std	r24,-64(r1)	
+	std	r24,-64(r1)
 	cfi_offset(r24,-64)
 	sldi	rSHL, rSHL, 3
 	ld	rWORD6, 0(rSTR2)
@@ -641,7 +641,7 @@ L(DWunaligned):
 	mtctr   rTMP	/* Power4 wants mtctr 1st in dispatch group */
 	bgt	cr1, L(duP3)
 	beq	cr1, L(duP2)
-		
+
 /* Remainder is 8 */
 	.align 4
 L(duP1):
@@ -672,7 +672,7 @@ L(duP1e):
 	bne	cr0, L(duLcr0)
 	or	rWORD6, rE, rF
 	cmpld	cr6, rWORD5, rWORD6
-	b	L(duLoop3)	
+	b	L(duLoop3)
 	.align 4
 /* At this point we exit early with the first double word compare
    complete and remainder of 0 to 7 bytes.  See L(du14) for details on
@@ -736,7 +736,7 @@ L(duP2x):
 	ld	rWORD2, 8(rSTR2)
 	srd	rA, rWORD2, rSHR
 	b	L(dutrim)
-		
+
 /* Remainder is 24 */
 	.align 4
 L(duP3):
@@ -786,7 +786,7 @@ L(duP3x):
 	ld	rWORD2, 8(rSTR2)
 	srd	rA, rWORD2, rSHR
 	b	L(dutrim)
-	
+
 /* Count is a multiple of 32, remainder is 0 */
 	.align 4
 L(duP4):
@@ -852,8 +852,8 @@ L(duLoop3):
 	srd	rG, rWORD8, rSHR
 	sld	rB, rWORD8, rSHL
 	or	rWORD8, rG, rH
-	bdnz+	L(duLoop)	
-	
+	bdnz+	L(duLoop)
+
 L(duL4):
 	bne	cr1, L(duLcr1)
 	cmpld	cr1, rWORD3, rWORD4
@@ -875,7 +875,7 @@ L(du14):
    This allows the use of double word subtract to compute the final
    result.
 
-   However it may not be safe to load rWORD2 which may be beyond the 
+   However it may not be safe to load rWORD2 which may be beyond the
    string length. So we compare the bit length of the remainder to
    the right shift count (rSHR). If the bit count is less than or equal
    we do not need to load rWORD2 (all significant bits are already in
@@ -890,16 +890,16 @@ L(du14):
 L(dutrim):
 	ld	rWORD1, 8(rSTR1)
 	ld	rWORD8,-8(r1)
-	subfic	rN, rN, 64	/* Shift count is 64 - (rN * 8).  */ 
+	subfic	rN, rN, 64	/* Shift count is 64 - (rN * 8).  */
 	or	rWORD2, rA, rB
-	ld	rWORD7,-16(r1)	
+	ld	rWORD7,-16(r1)
 	ld	r29,-24(r1)
 	srd	rWORD1, rWORD1, rN
 	srd	rWORD2, rWORD2, rN
-	ld	r28,-32(r1)	
+	ld	r28,-32(r1)
 	ld	r27,-40(r1)
 	li	rRTN, 0
-	cmpld	cr0, rWORD1, rWORD2	
+	cmpld	cr0, rWORD1, rWORD2
 	ld	r26,-48(r1)
 	ld	r25,-56(r1)
  	beq	cr0, L(dureturn24)
@@ -913,7 +913,7 @@ L(duLcr0):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
 	li	rRTN, 1
-	bgt	cr0, L(dureturn29)	
+	bgt	cr0, L(dureturn29)
 	ld	r29,-24(r1)
 	ld	r28,-32(r1)
 	li	rRTN, -1
@@ -923,7 +923,7 @@ L(duLcr1):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
 	li	rRTN, 1
-	bgt	cr1, L(dureturn29)	
+	bgt	cr1, L(dureturn29)
 	ld	r29,-24(r1)
 	ld	r28,-32(r1)
 	li	rRTN, -1
@@ -933,7 +933,7 @@ L(duLcr6):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
 	li	rRTN, 1
-	bgt	cr6, L(dureturn29)	
+	bgt	cr6, L(dureturn29)
 	ld	r29,-24(r1)
 	ld	r28,-32(r1)
 	li	rRTN, -1
@@ -943,7 +943,7 @@ L(duLcr5):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
 	li	rRTN, 1
-	bgt	cr5, L(dureturn29)	
+	bgt	cr5, L(dureturn29)
 	ld	r29,-24(r1)
 	ld	r28,-32(r1)
 	li	rRTN, -1
@@ -955,14 +955,14 @@ L(duZeroReturn):
 L(dureturn):
 	ld	rWORD8,-8(r1)
 	ld	rWORD7,-16(r1)
-L(dureturn29):	
+L(dureturn29):
 	ld	r29,-24(r1)
 	ld	r28,-32(r1)
-L(dureturn27):	
+L(dureturn27):
 	ld	r27,-40(r1)
-L(dureturn26):	
+L(dureturn26):
 	ld	r26,-48(r1)
-L(dureturn25):	
+L(dureturn25):
 	ld	r25,-56(r1)
 L(dureturn24):
 	ld	r24,-64(r1)
diff --git a/sysdeps/powerpc/powerpc64/power4/memcpy.S b/sysdeps/powerpc/powerpc64/power4/memcpy.S
index c43d1d2e4e..4317c7e786 100644
--- a/sysdeps/powerpc/powerpc64/power4/memcpy.S
+++ b/sysdeps/powerpc/powerpc64/power4/memcpy.S
@@ -21,10 +21,10 @@
 /* __ptr_t [r3] memcpy (__ptr_t dst [r3], __ptr_t src [r4], size_t len [r5]);
    Returns 'dst'.
 
-   Memcpy handles short copies (< 32-bytes) using a binary move blocks 
-   (no loops) of lwz/stw.  The tail (remaining 1-3) bytes is handled 
-   with the appropriate combination of byte and halfword load/stores. 
-   There is minimal effort to optimize the alignment of short moves.  
+   Memcpy handles short copies (< 32-bytes) using a binary move blocks
+   (no loops) of lwz/stw.  The tail (remaining 1-3) bytes is handled
+   with the appropriate combination of byte and halfword load/stores.
+   There is minimal effort to optimize the alignment of short moves.
    The 64-bit implementations of POWER3 and POWER4 do a reasonable job
    of handling unaligned load/stores that do not cross 32-byte boundaries.
 
@@ -47,13 +47,13 @@ EALIGN (memcpy, 5, 0)
     clrldi 10,4,61	/* check alignment of src.  */
     cmpldi cr6,5,8
     ble-  cr1,.L2	/* If move < 32 bytes use short move code.  */
-    cmpld cr6,10,11     
+    cmpld cr6,10,11
     mr    12,4
     srdi  9,5,3		/* Number of full double words remaining.  */
     mtcrf 0x01,0
     mr    31,5
     beq   .L0
-  
+
     subf  31,0,5
   /* Move 0-7 bytes as needed to get the destination doubleword aligned.  */
 1:  bf    31,2f
@@ -74,15 +74,15 @@ EALIGN (memcpy, 5, 0)
 0:
     clrldi 10,12,61	/* check alignment of src again.  */
     srdi  9,31,3	/* Number of full double words remaining.  */
-    
+
   /* Copy doublewords from source to destination, assuming the
      destination is aligned on a doubleword boundary.
 
      At this point we know there are at least 25 bytes left (32-7) to copy.
-     The next step is to determine if the source is also doubleword aligned. 
+     The next step is to determine if the source is also doubleword aligned.
      If not branch to the unaligned move code at .L6. which uses
      a load, shift, store strategy.
-     
+
      Otherwise source and destination are doubleword aligned, and we can
      the optimized doubleword copy loop.  */
 .L0:
@@ -95,14 +95,14 @@ EALIGN (memcpy, 5, 0)
      Use a unrolled loop to copy 4 doubleword (32-bytes) per iteration.
      If the copy is not an exact multiple of 32 bytes, 1-3
      doublewords are copied as needed to set up the main loop.  After
-     the main loop exits there may be a tail of 1-7 bytes. These byte are 
+     the main loop exits there may be a tail of 1-7 bytes. These byte are
      copied a word/halfword/byte at a time as needed to preserve alignment.  */
 
     srdi  8,31,5
     cmpldi	cr1,9,4
     cmpldi	cr6,11,0
     mr    11,12
-    
+
     bf    30,1f
     ld    6,0(12)
     ld    7,8(12)
@@ -113,7 +113,7 @@ EALIGN (memcpy, 5, 0)
     addi  10,3,16
     bf    31,4f
     ld    0,16(12)
-    std   0,16(3)    
+    std   0,16(3)
     blt   cr1,3f
     addi  11,12,24
     addi  10,3,24
@@ -127,7 +127,7 @@ EALIGN (memcpy, 5, 0)
     addi  11,12,8
     std   6,0(3)
     addi  10,3,8
-    
+
     .align  4
 4:
     ld    6,0(11)
@@ -142,7 +142,7 @@ EALIGN (memcpy, 5, 0)
     std   0,24(10)
     addi  10,10,32
     bdnz  4b
-3:  
+3:
 
     rldicr 0,31,0,60
     mtcrf 0x01,31
@@ -150,7 +150,7 @@ EALIGN (memcpy, 5, 0)
 .L9:
     add   3,3,0
     add   12,12,0
-    
+
 /*  At this point we have a tail of 0-7 bytes and we know that the
     destination is double word aligned.  */
 4:  bf    29,2f
@@ -171,29 +171,29 @@ EALIGN (memcpy, 5, 0)
     ld 31,-8(1)
     ld 3,-16(1)
     blr
-       
-/* Copy up to 31 bytes.  This divided into two cases 0-8 bytes and 9-31 
-   bytes.  Each case is handled without loops, using binary (1,2,4,8) 
-   tests.  
-   
+
+/* Copy up to 31 bytes.  This divided into two cases 0-8 bytes and 9-31
+   bytes.  Each case is handled without loops, using binary (1,2,4,8)
+   tests.
+
    In the short (0-8 byte) case no attempt is made to force alignment
-   of either source or destination.  The hardware will handle the 
-   unaligned load/stores with small delays for crossing 32- 64-byte, and 
+   of either source or destination.  The hardware will handle the
+   unaligned load/stores with small delays for crossing 32- 64-byte, and
    4096-byte boundaries. Since these short moves are unlikely to be
-   unaligned or cross these boundaries, the overhead to force 
+   unaligned or cross these boundaries, the overhead to force
    alignment is not justified.
-   
+
    The longer (9-31 byte) move is more likely to cross 32- or 64-byte
    boundaries.  Since only loads are sensitive to the 32-/64-byte
-   boundaries it is more important to align the source then the 
+   boundaries it is more important to align the source then the
    destination.  If the source is not already word aligned, we first
-   move 1-3 bytes as needed.  Since we are only word aligned we don't 
-   use double word load/stores to insure that all loads are aligned. 
+   move 1-3 bytes as needed.  Since we are only word aligned we don't
+   use double word load/stores to insure that all loads are aligned.
    While the destination and stores may still be unaligned, this
    is only an issue for page (4096 byte boundary) crossing, which
    should be rare for these short moves.  The hardware handles this
-   case automatically with a small delay.  */ 
-   
+   case automatically with a small delay.  */
+
     .align  4
 .L2:
     mtcrf 0x01,5
@@ -256,11 +256,11 @@ EALIGN (memcpy, 5, 0)
     lwz   6,0(12)
     addi  12,12,4
     stw   6,0(3)
-    addi  3,3,4    
+    addi  3,3,4
 2:  /* Move 2-3 bytes.  */
     bf    30,1f
     lhz   6,0(12)
-    sth   6,0(3) 
+    sth   6,0(3)
     bf    31,0f
     lbz   7,2(12)
     stb   7,2(3)
@@ -281,7 +281,7 @@ EALIGN (memcpy, 5, 0)
     mr    12,4
     bne   cr6,4f
 /* Would have liked to use use ld/std here but the 630 processors are
-   slow for load/store doubles that are not at least word aligned.  
+   slow for load/store doubles that are not at least word aligned.
    Unaligned Load/Store word execute with only a 1 cycle penalty.  */
     lwz   6,0(4)
     lwz   7,4(4)
@@ -297,14 +297,14 @@ EALIGN (memcpy, 5, 0)
 6:
     bf    30,5f
     lhz   7,4(4)
-    sth   7,4(3) 
+    sth   7,4(3)
     bf    31,0f
     lbz   8,6(4)
     stb   8,6(3)
     ld 3,-16(1)
     blr
     .align  4
-5:  
+5:
     bf    31,0f
     lbz   6,4(4)
     stb   6,4(3)
@@ -401,7 +401,7 @@ EALIGN (memcpy, 5, 0)
     /* calculate and store the final DW */
     sld   0,6,10
     srd   8,7,9
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
 3:
     rldicr 0,31,0,60
diff --git a/sysdeps/powerpc/powerpc64/power5+/fpu/s_llround.S b/sysdeps/powerpc/powerpc64/power5+/fpu/s_llround.S
index 108910e77d..28df006425 100644
--- a/sysdeps/powerpc/powerpc64/power5+/fpu/s_llround.S
+++ b/sysdeps/powerpc/powerpc64/power5+/fpu/s_llround.S
@@ -18,13 +18,13 @@
 
 #include <sysdep.h>
 #include <math_ldbl_opt.h>
-	
+
 /* long long [r3] llround (float x [fp1])
-   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest 
+   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "round to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we pre-round using the V2.02 Floating Round to Integer Nearest
    instruction before we use Floating Convert to Integer Word with
    round to zero instruction.  */
@@ -32,7 +32,7 @@
 	.machine	"power5"
 EALIGN (__llround, 4, 0)
 	CALL_MCOUNT 0
-	frin	fp2, fp1	/* Round to nearest +-0.5.  */	
+	frin	fp2, fp1	/* Round to nearest +-0.5.  */
 	fctidz	fp3, fp2	/* Convert To Integer DW round toward 0.  */
 	stfd	fp3, -16(r1)
 	nop	/* Insure the following load is in a different dispatch group */
diff --git a/sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S b/sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S
index 3afec2b6b0..8319d6e176 100644
--- a/sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S
+++ b/sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S
@@ -21,13 +21,13 @@
 
 /* int __isnan(x)  */
 	.machine power5
-EALIGN (__isnan, 4, 0)	
+EALIGN (__isnan, 4, 0)
 	CALL_MCOUNT 0
 	stfd	fp1,-8(r1)	/* copy FPR to GPR */
 	lis	r0,0x7ff0
 	nop			/* insure the following is in a different */
 	nop			/* dispatch group */
-	ld	r4,-8(r1)	
+	ld	r4,-8(r1)
 	sldi	r0,r0,32	/* const long r0 0x7ff00000 00000000 */
 	clrldi	r4,r4,1		/* x = fabs(x) */
 	cmpd	cr7,r4,r0	/* if (fabs(x) <= inf) */
diff --git a/sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S b/sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S
index 8f0c80662c..d4515d69d2 100644
--- a/sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S
+++ b/sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S
@@ -21,7 +21,7 @@
 
 /* int __isnan(x)  */
 	.machine power6
-EALIGN (__isnan, 4, 0)	
+EALIGN (__isnan, 4, 0)
 	CALL_MCOUNT 0
 	stfd	fp1,-8(r1)	/* copy FPR to GPR */
 	ori	r1,r1,0
diff --git a/sysdeps/powerpc/powerpc64/power6/memcpy.S b/sysdeps/powerpc/powerpc64/power6/memcpy.S
index 55c0d71184..db29e2b065 100644
--- a/sysdeps/powerpc/powerpc64/power6/memcpy.S
+++ b/sysdeps/powerpc/powerpc64/power6/memcpy.S
@@ -21,22 +21,22 @@
 /* __ptr_t [r3] memcpy (__ptr_t dst [r3], __ptr_t src [r4], size_t len [r5]);
    Returns 'dst'.
 
-   Memcpy handles short copies (< 32-bytes) using a binary move blocks 
-   (no loops) of lwz/stw.  The tail (remaining 1-3) bytes is handled 
-   with the appropriate combination of byte and halfword load/stores. 
-   There is minimal effort to optimize the alignment of short moves.  
+   Memcpy handles short copies (< 32-bytes) using a binary move blocks
+   (no loops) of lwz/stw.  The tail (remaining 1-3) bytes is handled
+   with the appropriate combination of byte and halfword load/stores.
+   There is minimal effort to optimize the alignment of short moves.
    The 64-bit implementations of POWER3 and POWER4 do a reasonable job
    of handling unaligned load/stores that do not cross 32-byte boundaries.
 
    Longer moves (>= 32-bytes) justify the effort to get at least the
    destination doubleword (8-byte) aligned.  Further optimization is
    possible when both source and destination are doubleword aligned.
-   Each case has a optimized unrolled loop.  
-     
+   Each case has a optimized unrolled loop.
+
    For POWER6 unaligned loads will take a 20+ cycle hiccup for any
    L1 cache miss that crosses a 32- or 128-byte boundary.  Store
    is more forgiving and does not take a hiccup until page or
-   segment boundaries.  So we require doubleword alignment for 
+   segment boundaries.  So we require doubleword alignment for
    the source but may take a risk and only require word alignment
    for the destination.  */
 
@@ -54,10 +54,10 @@ EALIGN (memcpy, 7, 0)
     cmpldi cr6,5,8
     ble-  cr1,.L2	/* If move < 32 bytes use short move code.  */
     mtcrf 0x01,0
-    cmpld cr6,10,11  
+    cmpld cr6,10,11
     srdi  9,5,3		/* Number of full double words remaining.  */
     beq   .L0
-  
+
     subf  5,0,5
   /* Move 0-7 bytes as needed to get the destination doubleword aligned.
      Duplicate some code to maximize fall-through and minimize agen delays.  */
@@ -76,7 +76,7 @@ EALIGN (memcpy, 7, 0)
     lwz   6,1(4)
     stw   6,1(3)
     b     0f
-    
+
 2:  bf    30,4f
     lhz   6,0(4)
     sth   6,0(3)
@@ -84,26 +84,26 @@ EALIGN (memcpy, 7, 0)
     lwz   6,2(4)
     stw   6,2(3)
     b     0f
-    
+
 4:  bf    29,0f
     lwz   6,0(4)
     stw   6,0(3)
-0: 
+0:
 /* Add the number of bytes until the 1st doubleword of dst to src and dst.  */
     add   4,4,0
     add   3,3,0
-    
+
     clrldi 10,4,61	/* check alignment of src again.  */
     srdi  9,5,3	/* Number of full double words remaining.  */
-    
+
   /* Copy doublewords from source to destination, assuming the
      destination is aligned on a doubleword boundary.
 
      At this point we know there are at least 25 bytes left (32-7) to copy.
-     The next step is to determine if the source is also doubleword aligned. 
+     The next step is to determine if the source is also doubleword aligned.
      If not branch to the unaligned move code at .L6. which uses
      a load, shift, store strategy.
-     
+
      Otherwise source and destination are doubleword aligned, and we can
      the optimized doubleword copy loop.  */
     .align  4
@@ -121,12 +121,12 @@ EALIGN (memcpy, 7, 0)
      the main loop exits there may be a tail of 1-7 bytes. These byte
      are copied a word/halfword/byte at a time as needed to preserve
      alignment.
-     
+
      For POWER6 the L1 is store-through and the L2 is store-in.  The
      L2 is clocked at half CPU clock so we can store 16 bytes every
      other cycle.  POWER6 also has a load/store bypass so we can do
-     load, load, store, store every 2 cycles.  
-     
+     load, load, store, store every 2 cycles.
+
      The following code is sensitive to cache line alignment.  Do not
      make any change with out first making sure they don't result in
      splitting ld/std pairs across a cache line.  */
@@ -271,7 +271,7 @@ L(das_loop):
     std   8,16+96(10)
     std   0,24+96(10)
     ble   cr5,L(das_loop_e)
-    
+
     mtctr   12
     .align  4
 L(das_loop2):
@@ -324,7 +324,7 @@ L(das_loop_e):
     .align  4
 L(das_tail):
     beq   cr1,0f
-    
+
 L(das_tail2):
 /*  At this point we have a tail of 0-7 bytes and we know that the
     destination is double word aligned.  */
@@ -342,7 +342,7 @@ L(das_tail2):
     lbz   6,4(4)
     stb   6,4(3)
     b     0f
-  
+
 2:  bf    30,1f
     lhz   6,0(4)
     sth   6,0(3)
@@ -350,7 +350,7 @@ L(das_tail2):
     lbz   6,2(4)
     stb   6,2(3)
     b     0f
-    
+
 1:  bf    31,0f
     lbz   6,0(4)
     stb   6,0(3)
@@ -359,7 +359,7 @@ L(das_tail2):
     ld 3,-16(1)
     blr
 
-/* Copy up to 31 bytes.  This divided into two cases 0-8 bytes and 9-31 
+/* Copy up to 31 bytes.  This divided into two cases 0-8 bytes and 9-31
    bytes.  Each case is handled without loops, using binary (1,2,4,8)
    tests.
 
@@ -419,7 +419,7 @@ L(dus_tail):
 /* At least 6 bytes left and the source is word aligned.  This allows
    some speculative loads up front.  */
 /* We need to special case the fall-through because the biggest delays
-   are due to address computation not being ready in time for the 
+   are due to address computation not being ready in time for the
    AGEN.  */
     lwz   6,0(12)
     lwz   7,4(12)
@@ -515,7 +515,7 @@ L(dus_tail4):  /* Move 4 bytes.  */
 L(dus_tail2):  /* Move 2-3 bytes.  */
     bf    30,L(dus_tail1)
     lhz   6,0(12)
-    sth   6,0(3) 
+    sth   6,0(3)
     bf    31,L(dus_tailX)
     lbz   7,2(12)
     stb   7,2(3)
@@ -550,7 +550,7 @@ L(dus_4):
     stw   6,0(3)
     bf    30,L(dus_5)
     lhz   7,4(4)
-    sth   7,4(3) 
+    sth   7,4(3)
     bf    31,L(dus_0)
     lbz   8,6(4)
     stb   8,6(3)
@@ -588,8 +588,8 @@ L(dus_0):
     bge     cr0, L(du4_do)
     blt     cr5, L(du1_do)
     beq     cr5, L(du2_do)
-    b       L(du3_do) 
-       
+    b       L(du3_do)
+
     .align 4
 L(du1_do):
     bf      30,L(du1_1dw)
@@ -663,7 +663,7 @@ L(du1_fini):
     /* calculate and store the final DW */
     sldi   0,6, 8
     srdi   8,7, 64-8
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -740,7 +740,7 @@ L(du2_fini):
     /* calculate and store the final DW */
     sldi   0,6, 16
     srdi   8,7, 64-16
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -817,7 +817,7 @@ L(du3_fini):
     /* calculate and store the final DW */
     sldi   0,6, 24
     srdi   8,7, 64-24
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -900,7 +900,7 @@ L(du4_fini):
     /* calculate and store the final DW */
     sldi   0,6, 32
     srdi   8,7, 64-32
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -977,7 +977,7 @@ L(du5_fini):
     /* calculate and store the final DW */
     sldi   0,6, 40
     srdi   8,7, 64-40
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -1054,7 +1054,7 @@ L(du6_fini):
     /* calculate and store the final DW */
     sldi   0,6, 48
     srdi   8,7, 64-48
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
 
@@ -1131,10 +1131,10 @@ L(du7_fini):
     /* calculate and store the final DW */
     sldi   0,6, 56
     srdi   8,7, 64-56
-    or    0,0,8  
+    or    0,0,8
     std   0,0(4)
     b     L(du_done)
-    
+
     .align 4
 L(du_done):
     rldicr 0,31,0,60
@@ -1142,7 +1142,7 @@ L(du_done):
     beq   cr1,0f	/* If the tail is 0 bytes we are done!  */
 
     add   3,3,0
-    add   12,12,0    
+    add   12,12,0
 /*  At this point we have a tail of 0-7 bytes and we know that the
     destination is double word aligned.  */
 4:  bf    29,2f
diff --git a/sysdeps/powerpc/powerpc64/power6/wordcopy.c b/sysdeps/powerpc/powerpc64/power6/wordcopy.c
index f19829c2be..751789339d 100644
--- a/sysdeps/powerpc/powerpc64/power6/wordcopy.c
+++ b/sysdeps/powerpc/powerpc64/power6/wordcopy.c
@@ -37,7 +37,7 @@ _wordcopy_fwd_aligned (dstp, srcp, len)
   if (len & 1)
   {
     ((op_t *) dstp)[0] = ((op_t *) srcp)[0];
-    
+
     if (len == 1)
       return;
     srcp += OPSIZ;
@@ -105,10 +105,10 @@ _wordcopy_fwd_dest_aligned (dstp, srcp, len)
   {
     a1 = ((op_t *) srcp)[1];
     ((op_t *) dstp)[0] = MERGE (a0, sh_1, a1, sh_2);
-    
+
     if (len == 1)
       return;
-    
+
     a0 = a1;
     srcp += OPSIZ;
     dstp += OPSIZ;
@@ -137,7 +137,7 @@ _wordcopy_bwd_aligned (dstp, srcp, len)
     srcp -= OPSIZ;
     dstp -= OPSIZ;
     ((op_t *) dstp)[0] = ((op_t *) srcp)[0];
-    
+
     if (len == 1)
       return;
     len -= 1;
diff --git a/sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S b/sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S
index c09eb65c0f..d29fe9e3cd 100644
--- a/sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S
+++ b/sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S
@@ -21,7 +21,7 @@
 
 /* int __isnan(x)  */
 	.machine power6
-EALIGN (__isnan, 4, 0)	
+EALIGN (__isnan, 4, 0)
 	CALL_MCOUNT 0
 	mftgpr	r4,fp1		/* copy FPR to GPR */
 	lis	r0,0x7ff0
diff --git a/sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S b/sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S
index bb1627fae5..67d51ada6d 100644
--- a/sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S
+++ b/sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S
@@ -21,7 +21,7 @@
 
 	.machine	"power6"
 /* long long int[r3] __llrint (double x[fp1])  */
-ENTRY (__llrint)	
+ENTRY (__llrint)
 	CALL_MCOUNT 0
 	fctid	fp13,fp1
 	mftgpr  r3,fp13
diff --git a/sysdeps/powerpc/powerpc64/power6x/fpu/s_llround.S b/sysdeps/powerpc/powerpc64/power6x/fpu/s_llround.S
index 902db67a3a..45aaceaa3e 100644
--- a/sysdeps/powerpc/powerpc64/power6x/fpu/s_llround.S
+++ b/sysdeps/powerpc/powerpc64/power6x/fpu/s_llround.S
@@ -18,13 +18,13 @@
 
 #include <sysdep.h>
 #include <math_ldbl_opt.h>
-	
+
 /* long long [r3] llround (float x [fp1])
-   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest 
+   IEEE 1003.1 llround function.  IEEE specifies "round to the nearest
    integer value, rounding halfway cases away from zero, regardless of
    the current rounding mode."  However PowerPC Architecture defines
-   "round to Nearest" as "Choose the best approximation. In case of a 
-   tie, choose the one that is even (least significant bit o).". 
+   "round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
    So we pre-round using the V2.02 Floating Round to Integer Nearest
    instruction before we use Floating Convert to Integer Word with
    round to zero instruction.  */
@@ -32,7 +32,7 @@
 	.machine	"power6"
 ENTRY (__llround)
 	CALL_MCOUNT 0
-	frin	fp2,fp1	/* Round to nearest +-0.5.  */	
+	frin	fp2,fp1	/* Round to nearest +-0.5.  */
 	fctidz	fp3,fp2	/* Convert To Integer DW round toward 0.  */
 	mftgpr	r3,fp3  /* Transfer integer to R3.  */
 	blr
diff --git a/sysdeps/powerpc/powerpc64/strlen.S b/sysdeps/powerpc/powerpc64/strlen.S
index dafd033877..0f9b5eea9f 100644
--- a/sysdeps/powerpc/powerpc64/strlen.S
+++ b/sysdeps/powerpc/powerpc64/strlen.S
@@ -57,11 +57,11 @@
    2) How popular are bytes with the high bit set? If they are very rare,
    on some processors it might be useful to use the simpler expression
    ~((x - 0x01010101) | 0x7f7f7f7f) (that is, on processors with only one
-   ALU), but this fails when any character has its high bit set.  
-   
+   ALU), but this fails when any character has its high bit set.
+
    Answer:
-   1) Added a Data Cache Block Touch early to prefetch the first 128 
-   byte cache line. Adding dcbt instructions to the loop would not be 
+   1) Added a Data Cache Block Touch early to prefetch the first 128
+   byte cache line. Adding dcbt instructions to the loop would not be
    effective since most strings will be shorter than the cache line.*/
 
 /* Some notes on register usage: Under the SVR4 ABI, we can use registers
@@ -101,7 +101,7 @@ ENTRY (strlen)
 	li	rMASK, -1
 	insrdi	r7F7F, r7F7F, 32, 0
 /* That's the setup done, now do the first pair of doublewords.
-   We make an exception and use method (2) on the first two doublewords, 
+   We make an exception and use method (2) on the first two doublewords,
    to reduce overhead.  */
 	srd	rMASK, rMASK, rPADN
 	and	rTMP1, r7F7F, rWORD1
diff --git a/sysdeps/powerpc/powerpc64/strncmp.S b/sysdeps/powerpc/powerpc64/strncmp.S
index e2726883f2..779d9f7f6f 100644
--- a/sysdeps/powerpc/powerpc64/strncmp.S
+++ b/sysdeps/powerpc/powerpc64/strncmp.S
@@ -51,7 +51,7 @@ EALIGN (strncmp, 4, 0)
 	clrldi	rN, rN, 61
 	addi	rFEFE, rFEFE, -0x101
 	addi	r7F7F, r7F7F, 0x7f7f
-	cmpldi	cr1, rN, 0	
+	cmpldi	cr1, rN, 0
 	beq	L(unaligned)
 
 	mtctr	rTMP	/* Power4 wants mtctr 1st in dispatch group.  */
@@ -62,7 +62,7 @@ EALIGN (strncmp, 4, 0)
 	add	rFEFE, rFEFE, rTMP
 	b	L(g1)
 
-L(g0):	
+L(g0):
 	ldu	rWORD1, 8(rSTR1)
 	bne-	cr1, L(different)
 	ldu	rWORD2, 8(rSTR2)
@@ -72,11 +72,11 @@ L(g1):	add	rTMP, rFEFE, rWORD1
 	and.	rTMP, rTMP, rNEG
 	cmpd	cr1, rWORD1, rWORD2
 	beq+	L(g0)
-	
+
 /* OK. We've hit the end of the string. We need to be careful that
    we don't compare two strings as different because of gunk beyond
    the end of the strings...  */
-	
+
 L(endstring):
 	and	rTMP, r7F7F, rWORD1
 	beq	cr1, L(equal)
@@ -152,7 +152,7 @@ L(u1):
 	lbzu	rWORD1, 1(rSTR1)
 	bne+	cr1, L(u0)
 
-L(u2):	lbzu	rWORD1, -1(rSTR1)	
+L(u2):	lbzu	rWORD1, -1(rSTR1)
 L(u3):	sub	rRTN, rWORD1, rWORD2
 	blr
 END (strncmp)