about summary refs log tree commit diff
path: root/sysdeps/powerpc/powerpc64/fpu/s_llroundl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/powerpc64/fpu/s_llroundl.S')
-rw-r--r--sysdeps/powerpc/powerpc64/fpu/s_llroundl.S147
1 files changed, 147 insertions, 0 deletions
diff --git a/sysdeps/powerpc/powerpc64/fpu/s_llroundl.S b/sysdeps/powerpc/powerpc64/fpu/s_llroundl.S
new file mode 100644
index 0000000000..b7aeb394f7
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/fpu/s_llroundl.S
@@ -0,0 +1,147 @@
+/* llroundl function.
+   IBM extended format long double version.
+   Copyright (C) 2004, 2006 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#include <sysdep.h>
+#include <math_ldbl_opt.h>
+
+	.section	".toc","aw"
+.LC0:	/* 0.0 */
+	.tc FD_00000000_0[TC],0x0000000000000000
+.LC1:	/* 0.5 */
+	.tc FD_3fe00000_0[TC],0x3fe0000000000000
+.LC2:	/* 2**52 */
+	.tc FD_43300000_0[TC],0x4330000000000000
+.LC3:	/* 2**63 */
+	.tc FD_43E00000_0[TC],0x43e0000000000000
+	.section	".text"
+
+/* long long [r3] llround (long double x [fp1,fp2])
+   IEEE 1003.1 llroundl function.  IEEE specifies "round to the nearest
+   integer value, rounding halfway cases away from zero, regardless of
+   the current rounding mode."  However PowerPC Architecture defines
+   "round to Nearest" as "Choose the best approximation. In case of a
+   tie, choose the one that is even (least significant bit o).".
+   So we can't use the PowerPC "round to Nearest" mode. Instead we set
+   "round toward Zero" mode and round by adding +-0.5 before rounding
+   toward zero. The "Floating Convert To Integer Doubleword with round
+   toward zero" instruction handles the conversion including the
+   overflow cases and signalling "Invalid Operation".
+
+   PowerPC64 long double uses the IBM extended format which is
+   represented two 64-floating point double values. The values are
+   non-overlapping giving an effective precision of 106 bits. The first
+   double contains the high order bits of mantisa and is always rounded
+   to represent a normal rounding of long double to double. Since the
+   long double value is sum of the high and low values, the low double
+   normally has the opposite sign to compensate for the this rounding.
+
+   For long double there is 4 cases:
+   1) |x| < 2**52, all the integer bits are in the high double.
+      Round and convert the high double to long long.
+   2) 2**52 <= |x|< 2**63, Still fits but need bits from both doubles.
+      Round the low double, convert both, then sum the long long values.
+   3) |x| == 2**63, Looks like an overflow but may not be due to rounding
+      of the high double.
+      See the description following lable L2.
+   4) |x| > 2**63, This will overflow the 64-bit signed integer.
+      Treat like case #1. The fctidz instruction will generate the
+      appropriate and signal "invalid operation".
+
+   */
+
+ENTRY (__llroundl)
+	fabs	fp0,fp1
+	lfd	fp13,.LC2@toc(2)	/* 2**52 */
+	lfd	fp12,.LC3@toc(2)	/* 2**63 */
+	lfd	fp11,.LC0@toc(2)	/* 0.0 */
+	lfd	fp10,.LC1@toc(2)	/* 0.5 */
+	fcmpu	cr0,fp0,fp12		/* if (x < TWO63 */
+	fcmpu	cr7,fp0,fp13		/* if (x < TWO52 */
+	fcmpu	cr6,fp1,fp11		/* if (x > 0.0)  */
+	bge-	cr0,.L2
+	bge-	cr7,.L8
+	ble-	cr6,.L4
+	fadd	fp4,fp2,fp10		/* x+= 0.5;  */
+	fadd	fp5,fp1,fp4		/* x+= 0.5;  */
+.L9:
+	fctidz	fp3,fp5		/* Convert To Integer DW llround toward 0.  */
+	stfd	fp3,-16(r1)
+	nop	/* Insure the following load is in a different dispatch group */
+	nop	/* to avoid pipe stall on POWER4&5.  */
+	nop
+	ld	r3,-16(r1)
+	blr
+.L4:
+	fsub	fp4,fp2,fp10	/* x-= 0.5;  */
+	fadd	fp5,fp1,fp4		/* x+= 0.5;  */
+	b	.L9
+.L8:
+	ble	cr6,.L6
+	fneg	fp10,fp10
+.L6:
+	fadd	fp2,fp2,fp10
+	fctidz	fp3,fp1		/* Convert To Integer DW llround toward 0.  */
+	fctidz	fp4,fp2		/* Convert To Integer DW llround toward 0.  */
+	stfd	fp3,-16(r1)
+	stfd	fp4,-8(r1)
+	nop	/* Insure the following load is in a different dispatch group */
+	nop	/* to avoid pipe stall on POWER4&5.  */
+	nop
+	ld	r3,-16(r1)
+	ld	r0,-8(r1)
+	add	r3,r3,r0
+	blr
+.L2:
+/* The high double is >= TWO63 so it looks like we are "out of range".
+   But this may be caused by rounding of the high double and the
+   negative low double may bring it back into range. So we need to
+   de-round the high double and invert the low double without changing
+   the effective long double value. To do this we compute a special
+   value (tau) that we can subtract from the high double and add to
+   the low double before conversion. The resulting integers can be
+   summed to get the total value.
+
+   tau = floor(x_high/TWO52);
+   x0 = x_high - tau;
+   x1 = x_low + tau;  */
+.L2:
+	fdiv	fp8,fp1,fp13	/* x_high/TWO52  */
+	bgt-	cr0,.L9		/* if x > TWO63  */
+	fctidz	fp0,fp8
+	fcfid	fp8,fp0		/* tau = floor(x_high/TWO52);  */
+	fsub	fp3,fp1,fp8	/* x0 = x_high - tau;  */
+	fadd	fp4,fp2,fp8	/* x1 = x_low + tau;  */
+	fctid	fp11,fp3
+	fctid	fp12,fp4
+	stfd	fp11,-16(r1)
+	stfd	fp12,-8(r1)
+	nop	/* Insure the following load is in a different dispatch group */
+	nop	/* to avoid pipe stall on POWER4&5.  */
+	nop
+	ld	r3,-16(r1)
+	ld	r0,-8(r1)
+	addo.	r3,r3,r0
+	bnslr+  cr0		/* if the sum does not overflow, return.  */
+	b	.L9		/* Otherwise we want to set "invalid operation".  */
+END (__llroundl)
+
+strong_alias (__llroundl, __lroundl)
+long_double_symbol (libm, __llroundl, llroundl)
+long_double_symbol (libm, __lroundl, lroundl)