about summary refs log tree commit diff
path: root/sysdeps/powerpc/fpu/e_sqrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/fpu/e_sqrtf.c')
-rw-r--r--sysdeps/powerpc/fpu/e_sqrtf.c150
1 files changed, 0 insertions, 150 deletions
diff --git a/sysdeps/powerpc/fpu/e_sqrtf.c b/sysdeps/powerpc/fpu/e_sqrtf.c
deleted file mode 100644
index 65d27b4d42..0000000000
--- a/sysdeps/powerpc/fpu/e_sqrtf.c
+++ /dev/null
@@ -1,150 +0,0 @@
-/* Single-precision floating point square root.
-   Copyright (C) 1997-2017 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, see
-   <http://www.gnu.org/licenses/>.  */
-
-#include <math.h>
-#include <math_private.h>
-#include <fenv_libc.h>
-#include <inttypes.h>
-#include <stdint.h>
-#include <sysdep.h>
-#include <ldsodefs.h>
-
-#ifndef _ARCH_PPCSQ
-static const float almost_half = 0.50000006;	/* 0.5 + 2^-24 */
-static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
-static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
-static const float two48 = 281474976710656.0;
-static const float twom24 = 5.9604644775390625e-8;
-extern const float __t_sqrt[1024];
-
-/* The method is based on a description in
-   Computation of elementary functions on the IBM RISC System/6000 processor,
-   P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
-   Basically, it consists of two interleaved Newton-Raphson approximations,
-   one to find the actual square root, and one to find its reciprocal
-   without the expense of a division operation.   The tricky bit here
-   is the use of the POWER/PowerPC multiply-add operation to get the
-   required accuracy with high speed.
-
-   The argument reduction works by a combination of table lookup to
-   obtain the initial guesses, and some careful modification of the
-   generated guesses (which mostly runs on the integer unit, while the
-   Newton-Raphson is running on the FPU).  */
-
-float
-__slow_ieee754_sqrtf (float x)
-{
-  const float inf = a_inf.value;
-
-  if (x > 0)
-    {
-      if (x != inf)
-	{
-	  /* Variables named starting with 's' exist in the
-	     argument-reduced space, so that 2 > sx >= 0.5,
-	     1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
-	     Variables named ending with 'i' are integer versions of
-	     floating-point values.  */
-	  float sx;		/* The value of which we're trying to find the square
-				   root.  */
-	  float sg, g;		/* Guess of the square root of x.  */
-	  float sd, d;		/* Difference between the square of the guess and x.  */
-	  float sy;		/* Estimate of 1/2g (overestimated by 1ulp).  */
-	  float sy2;		/* 2*sy */
-	  float e;		/* Difference between y*g and 1/2 (note that e==se).  */
-	  float shx;		/* == sx * fsg */
-	  float fsg;		/* sg*fsg == g.  */
-	  fenv_t fe;		/* Saved floating-point environment (stores rounding
-				   mode and whether the inexact exception is
-				   enabled).  */
-	  uint32_t xi, sxi, fsgi;
-	  const float *t_sqrt;
-
-	  GET_FLOAT_WORD (xi, x);
-	  fe = fegetenv_register ();
-	  relax_fenv_state ();
-	  sxi = (xi & 0x3fffffff) | 0x3f000000;
-	  SET_FLOAT_WORD (sx, sxi);
-	  t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
-	  sg = t_sqrt[0];
-	  sy = t_sqrt[1];
-
-	  /* Here we have three Newton-Raphson iterations each of a
-	     division and a square root and the remainder of the
-	     argument reduction, all interleaved.   */
-	  sd = -__builtin_fmaf (sg, sg, -sx);
-	  fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
-	  sy2 = sy + sy;
-	  sg = __builtin_fmaf (sy, sd, sg);	/* 16-bit approximation to
-						   sqrt(sx). */
-	  e = -__builtin_fmaf (sy, sg, -almost_half);
-	  SET_FLOAT_WORD (fsg, fsgi);
-	  sd = -__builtin_fmaf (sg, sg, -sx);
-	  sy = __builtin_fmaf (e, sy2, sy);
-	  if ((xi & 0x7f800000) == 0)
-	    goto denorm;
-	  shx = sx * fsg;
-	  sg = __builtin_fmaf (sy, sd, sg);	/* 32-bit approximation to
-						   sqrt(sx), but perhaps
-						   rounded incorrectly.  */
-	  sy2 = sy + sy;
-	  g = sg * fsg;
-	  e = -__builtin_fmaf (sy, sg, -almost_half);
-	  d = -__builtin_fmaf (g, sg, -shx);
-	  sy = __builtin_fmaf (e, sy2, sy);
-	  fesetenv_register (fe);
-	  return __builtin_fmaf (sy, d, g);
-	denorm:
-	  /* For denormalised numbers, we normalise, calculate the
-	     square root, and return an adjusted result.  */
-	  fesetenv_register (fe);
-	  return __slow_ieee754_sqrtf (x * two48) * twom24;
-	}
-    }
-  else if (x < 0)
-    {
-      /* For some reason, some PowerPC32 processors don't implement
-	 FE_INVALID_SQRT.  */
-#ifdef FE_INVALID_SQRT
-      feraiseexcept (FE_INVALID_SQRT);
-
-      fenv_union_t u = { .fenv = fegetenv_register () };
-      if ((u.l & FE_INVALID) == 0)
-#endif
-	feraiseexcept (FE_INVALID);
-      x = a_nan.value;
-    }
-  return f_washf (x);
-}
-#endif /* _ARCH_PPCSQ  */
-
-#undef __ieee754_sqrtf
-float
-__ieee754_sqrtf (float x)
-{
-  double z;
-
-#ifdef _ARCH_PPCSQ
-  asm ("fsqrts	%0,%1\n" :"=f" (z):"f" (x));
-#else
-  z = __slow_ieee754_sqrtf (x);
-#endif
-
-  return z;
-}
-strong_alias (__ieee754_sqrtf, __sqrtf_finite)