about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754')
-rw-r--r--sysdeps/libm-ieee754/e_exp.c330
-rw-r--r--sysdeps/libm-ieee754/e_expf.c241
-rw-r--r--sysdeps/libm-ieee754/s_exp2.c71
-rw-r--r--sysdeps/libm-ieee754/s_exp2f.c77
-rw-r--r--sysdeps/libm-ieee754/t_exp.c436
-rw-r--r--sysdeps/libm-ieee754/t_exp2f.h649
6 files changed, 1184 insertions, 620 deletions
diff --git a/sysdeps/libm-ieee754/e_exp.c b/sysdeps/libm-ieee754/e_exp.c
index 9eba853c8f..a6d53eb9df 100644
--- a/sysdeps/libm-ieee754/e_exp.c
+++ b/sysdeps/libm-ieee754/e_exp.c
@@ -1,167 +1,179 @@
-/* @(#)e_exp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
- * is preserved.
- * ====================================================
- */
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $";
-#endif
+/* Double-precision floating point e^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
 
-/* __ieee754_exp(x)
- * Returns the exponential of x.
- *
- * Method
- *   1. Argument reduction:
- *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
- *	Given x, find r and integer k such that
- *
- *               x = k*ln2 + r,  |r| <= 0.5*ln2.  
- *
- *      Here r will be represented as r = hi-lo for better 
- *	accuracy.
- *
- *   2. Approximation of exp(r) by a special rational function on
- *	the interval [0,0.34658]:
- *	Write
- *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- *      We use a special Reme algorithm on [0,0.34658] to generate 
- * 	a polynomial of degree 5 to approximate R. The maximum error 
- *	of this polynomial approximation is bounded by 2**-59. In
- *	other words,
- *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
- *  	(where z=r*r, and the values of P1 to P5 are listed below)
- *	and
- *	    |                  5          |     -59
- *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 
- *	    |                             |
- *	The computation of exp(r) thus becomes
- *                             2*r
- *		exp(r) = 1 + -------
- *		              R - r
- *                                 r*R1(r)	
- *		       = 1 + r + ----------- (for better accuracy)
- *		                  2 - R1(r)
- *	where
- *			         2       4             10
- *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
- *	
- *   3. Scale back to obtain exp(x):
- *	From step 1, we have
- *	   exp(x) = 2^k * exp(r)
- *
- * Special cases:
- *	exp(INF) is INF, exp(NaN) is NaN;
- *	exp(-INF) is 0, and
- *	for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- *	according to an error analysis, the error is always less than
- *	1 ulp (unit in the last place).
- *
- * Misc. info.
- *	For IEEE double 
- *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
- *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following 
- * constants. The decimal values may be used, provided that the 
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "math.h"
-#include "math_private.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one	= 1.0,
-halF[2]	= {0.5,-0.5,},
-huge	= 1.0e+300,
-twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
-o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
-u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
-ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
-	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
-ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
-	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
-invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
-
-
-#ifdef __STDC__
-	double __ieee754_exp(double x)	/* default IEEE double exp */
-#else
-	double __ieee754_exp(x)	/* default IEEE double exp */
-	double x;
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* How this works:
+   The basic design here is from
+   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+   17 (1), March 1991, pp. 26-45.
+
+   The input value, x, is written as
+
+   x = n * ln(2)_0 + t/512 + delta[t] + x + n * ln(2)_1
+
+   where:
+   - n is an integer, 1024 >= n >= -1075;
+   - ln(2)_0 is the first 43 bits of ln(2), and ln(2)_1 is the remainder, so
+     that |ln(2)_1| < 2^-32;
+   - t is an integer, 177 >= t >= -177
+   - delta is based on a table entry, delta[t] < 2^-28
+   - x is whatever is left, |x| < 2^-10
+
+   Then e^x is approximated as
+
+   e^x = 2^n_1 ( 2^n_0 e^(t/512 + delta[t])
+               + ( 2^n_0 e^(t/512 + delta[t])
+                   * ( p(x + n * ln(2)_1)
+                       - n*ln(2)_1
+                       - n*ln(2)_1 * p(x + n * ln(2)_1) ) ) )
+
+   where
+   - p(x) is a polynomial approximating e(x)-1;
+   - e^(t/512 + delta[t]) is obtained from a table;
+   - n_1 + n_0 = n, so that |n_0| < DBL_MIN_EXP-1.
+
+   If it happens that n_1 == 0 (this is the usual case), that multiplication
+   is omitted.
+   */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
 #endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+extern const float __exp_deltatable[178];
+extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
+
+static const volatile double TWO1023 = 8.988465674311579539e+307;
+static const volatile double TWOM1000 = 9.3326361850321887899e-302;
+
+double
+__ieee754_exp (double x)
 {
-	double y,hi,lo,c,t;
-	int32_t k,xsb;
-	u_int32_t hx;
-
-	GET_HIGH_WORD(hx,x);
-	xsb = (hx>>31)&1;		/* sign bit of x */
-	hx &= 0x7fffffff;		/* high word of |x| */
-
-    /* filter out non-finite argument */
-	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
-            if(hx>=0x7ff00000) {
-	        u_int32_t lx;
-		GET_LOW_WORD(lx,x);
-		if(((hx&0xfffff)|lx)!=0) 
-		     return x+x; 		/* NaN */
-		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
-	    }
-	    if(x > o_threshold) return huge*huge; /* overflow */
-	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
+  static const uint32_t a_minf = 0xff800000;
+  static const double himark = 709.7827128933840868;
+  static const double lomark = -745.1332191019412221;
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const float TWO43 = 8796093022208.0;
+      static const float TWO52 = 4503599627370496.0;
+      /* 1/ln(2).  */
+      static const double M_1_LN2 = 1.442695040888963387;
+      /* ln(2), part 1 */
+      static const double M_LN2_0 = .6931471805598903302;
+      /* ln(2), part 2 */
+      static const double M_LN2_1 = 5.497923018708371155e-14;
+
+      int tval, unsafe, n_i;
+      double x22, n, t, dely, result;
+      union ieee754_double ex2_u, scale_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+      fesetround (FE_TONEAREST);
+
+      /* Calculate n.  */
+      if (x >= 0)
+	{
+	  n = x * M_1_LN2 + TWO52;
+	  n -= TWO52;
 	}
+      else
+	{
+	  n = x * M_1_LN2 - TWO52;
+	  n += TWO52;
+	}
+      x = x - n*M_LN2_0;
+      if (x >= 0)
+	{
+	  /* Calculate t/512.  */
+	  t = x + TWO43;
+	  t -= TWO43;
+	  x -= t;
+
+	  /* Compute tval = t.  */
+	  tval = (int) (t * 512.0);
 
-    /* argument reduction */
-	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
-	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
-		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
-	    } else {
-		k  = invln2*x+halF[xsb];
-		t  = k;
-		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
-		lo = t*ln2LO[0];
-	    }
-	    x  = hi - lo;
-	} 
-	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
-	    if(huge+x>one) return one+x;/* trigger inexact */
+	  x -= __exp_deltatable[tval];
 	}
-	else k = 0;
-
-    /* x is now in primary range */
-	t  = x*x;
-	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-	if(k==0) 	return one-((x*c)/(c-2.0)-x); 
-	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
-	if(k >= -1021) {
-	    u_int32_t hy;
-	    GET_HIGH_WORD(hy,y);
-	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
-	    return y;
-	} else {
-	    u_int32_t hy;
-	    GET_HIGH_WORD(hy,y);
-	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
-	    return y*twom1000;
+      else
+	{
+	  /* As above, but x is negative.  */
+	  t = x - TWO43;
+	  t += TWO43;
+	  x -= t;
+
+	  tval = (int) (t * 512.0);
+
+	  x += __exp_deltatable[-tval];
 	}
+
+      /* Now, the variable x contains x + n*ln(2)_1.  */
+      dely = n*M_LN2_1;
+
+      /* Compute ex2 = 2^n_0 e^(t/512+delta[t]).  */
+      ex2_u.d = __exp_atable[tval+177];
+      n_i = (int)n;
+      /* 'unsafe' is 1 iff n_1 != 0.  */
+      unsafe = abs(n_i) >= -DBL_MIN_EXP - 1;
+      ex2_u.ieee.exponent += n_i >> unsafe;
+
+      /* Compute scale = 2^n_1.  */
+      scale_u.d = 1.0;
+      scale_u.ieee.exponent += n_i - (n_i >> unsafe);
+
+      /* Approximate e^x2 - 1, using a fourth-degree polynomial,
+	 with maximum error in [-2^-10-2^-28,2^-10+2^-28]
+	 less than 4.9e-19.  */
+      x22 = (((0.04166666898464281565
+	       * x + 0.1666666766008501610)
+	      * x + 0.499999999999990008)
+	     * x + 0.9999999999999976685) * x;
+      /* Allow for impact of dely.  */
+      x22 -= dely + dely*x22;
+
+      /* Return result.  */
+      fesetenv (&oldenv);
+
+      result = x22 * ex2_u.d + ex2_u.d;
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.d;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (x == *(const float *) &a_minf)
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM1000 * TWOM1000;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO1023*x;
 }
diff --git a/sysdeps/libm-ieee754/e_expf.c b/sysdeps/libm-ieee754/e_expf.c
index fbf2691bf9..08103aa271 100644
--- a/sysdeps/libm-ieee754/e_expf.c
+++ b/sysdeps/libm-ieee754/e_expf.c
@@ -1,104 +1,157 @@
-/* e_expf.c -- float version of e_exp.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_expf.c,v 1.6 1996/04/08 15:43:43 phil Exp $";
-#endif
+/* Single-precision floating point e^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
 
-#include "math.h"
-#include "math_private.h"
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
 
-static const float huge = 1.0e+30;
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
 
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one	= 1.0,
-halF[2]	= {0.5,-0.5,},
-twom100 = 7.8886090522e-31,      /* 2**-100=0x0d800000 */
-o_threshold=  8.8721679688e+01,  /* 0x42b17180 */
-u_threshold= -1.0397208405e+02,  /* 0xc2cff1b5 */
-ln2HI[2]   ={ 6.9313812256e-01,		/* 0x3f317180 */
-	     -6.9313812256e-01,},	/* 0xbf317180 */
-ln2LO[2]   ={ 9.0580006145e-06,  	/* 0x3717f7d1 */
-	     -9.0580006145e-06,},	/* 0xb717f7d1 */
-invln2 =  1.4426950216e+00, 		/* 0x3fb8aa3b */
-P1   =  1.6666667163e-01, /* 0x3e2aaaab */
-P2   = -2.7777778450e-03, /* 0xbb360b61 */
-P3   =  6.6137559770e-05, /* 0x388ab355 */
-P4   = -1.6533901999e-06, /* 0xb5ddea0e */
-P5   =  4.1381369442e-08; /* 0x3331bb4c */
-
-#ifdef __STDC__
-	float __ieee754_expf(float x)	/* default IEEE double exp */
-#else
-	float __ieee754_expf(x)	/* default IEEE double exp */
-	float x;
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* How this works:
+
+   The input value, x, is written as
+
+   x = n * ln(2) + t/512 + delta[t] + x;
+
+   where:
+   - n is an integer, 127 >= n >= -150;
+   - t is an integer, 177 >= t >= -177
+   - delta is based on a table entry, delta[t] < 2^-28
+   - x is whatever is left, |x| < 2^-10
+
+   Then e^x is approximated as
+
+   e^x = 2^n ( e^(t/512 + delta[t])
+               + ( e^(t/512 + delta[t])
+                   * ( p(x + delta[t] + n * ln(2)) - delta ) ) )
+
+   where
+   - p(x) is a polynomial approximating e(x)-1;
+   - e^(t/512 + delta[t]) is obtained from a table.
+
+   The table used is the same one as for the double precision version;
+   since we have the table, we might as well use it.
+
+   It turns out to be faster to do calculations in double precision than
+   to perform an 'accurate table method' expf, because of the range reduction
+   overhead (compare exp2f).
+   */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
 #endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+extern const float __exp_deltatable[178];
+extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
+
+static const volatile float TWOM100 = 7.88860905e-31;
+static const volatile float TWO127 = 1.7014118346e+38;
+
+float
+__ieee754_expf (float x)
 {
-	float y,hi,lo,c,t;
-	int32_t k,xsb;
-	u_int32_t hx;
-
-	GET_FLOAT_WORD(hx,x);
-	xsb = (hx>>31)&1;		/* sign bit of x */
-	hx &= 0x7fffffff;		/* high word of |x| */
-
-    /* filter out non-finite argument */
-	if(hx >= 0x42b17218) {			/* if |x|>=88.721... */
-	    if(hx>0x7f800000)
-		 return x+x;	 		/* NaN */
-            if(hx==0x7f800000)
-		return (xsb==0)? x:0.0;		/* exp(+-inf)={inf,0} */
-	    if(x > o_threshold) return huge*huge; /* overflow */
-	    if(x < u_threshold) return twom100*twom100; /* underflow */
-	}
+  static const uint32_t a_minf = 0xff800000;
+  static const float himark = 88.72283935546875;
+  static const float lomark = -103.972084045410;
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const float TWO43 = 8796093022208.0;
+      static const float TWO23 = 8388608.0;
+      /* 1/ln(2).  */
+#undef M_1_LN2
+      static const float M_1_LN2 = 1.44269502163f;
+      /* ln(2) */
+#undef M_LN2
+      static const double M_LN2 = .6931471805599452862;
+
+      int tval;
+      double x22, t, result, dx;
+      float n, delta;
+      union ieee754_double ex2_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+      fesetround (FE_TONEAREST);
 
-    /* argument reduction */
-	if(hx > 0x3eb17218) {		/* if  |x| > 0.5 ln2 */
-	    if(hx < 0x3F851592) {	/* and |x| < 1.5 ln2 */
-		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
-	    } else {
-		k  = invln2*x+halF[xsb];
-		t  = k;
-		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
-		lo = t*ln2LO[0];
-	    }
-	    x  = hi - lo;
+      /* Calculate n.  */
+      if (x >= 0)
+	{
+	  n = x * M_1_LN2 + TWO23;
+	  n -= TWO23;
 	}
-	else if(hx < 0x31800000)  {	/* when |x|<2**-28 */
-	    if(huge+x>one) return one+x;/* trigger inexact */
+      else
+	{
+	  n = x * M_1_LN2 - TWO23;
+	  n += TWO23;
 	}
-	else k = 0;
-
-    /* x is now in primary range */
-	t  = x*x;
-	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-	if(k==0) 	return one-((x*c)/(c-(float)2.0)-x);
-	else 		y = one-((lo-(x*c)/((float)2.0-c))-hi);
-	if(k >= -125) {
-	    u_int32_t hy;
-	    GET_FLOAT_WORD(hy,y);
-	    SET_FLOAT_WORD(y,hy+(k<<23));	/* add k to y's exponent */
-	    return y;
-	} else {
-	    u_int32_t hy;
-	    GET_FLOAT_WORD(hy,y);
-	    SET_FLOAT_WORD(y,hy+((k+100)<<23));	/* add k to y's exponent */
-	    return y*twom100;
+      dx = x - n*M_LN2;
+      if (dx >= 0)
+	{
+	  /* Calculate t/512.  */
+	  t = dx + TWO43;
+	  t -= TWO43;
+	  dx -= t;
+
+	  /* Compute tval = t.  */
+	  tval = (int) (t * 512.0);
+
+	  delta = - __exp_deltatable[tval];
 	}
+      else
+	{
+	  /* As above, but x is negative.  */
+	  t = dx - TWO43;
+	  t += TWO43;
+	  dx -= t;
+
+	  tval = (int) (t * 512.0);
+
+	  delta = __exp_deltatable[-tval];
+	}
+
+      /* Compute ex2 = 2^n e^(t/512+delta[t]).  */
+      ex2_u.d = __exp_atable[tval+177];
+      ex2_u.ieee.exponent += (int) n;
+
+      /* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
+	 with maximum error in [-2^-10-2^-28,2^-10+2^-28]
+	 less than 5e-11.  */
+      x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
+
+      /* Return result.  */
+      fesetenv (&oldenv);
+
+      result = x22 * ex2_u.d + ex2_u.d;
+      return (float) result;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (x == *(const float *) &a_minf)
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM100 * TWOM100;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO127*x;
 }
diff --git a/sysdeps/libm-ieee754/s_exp2.c b/sysdeps/libm-ieee754/s_exp2.c
index fc3fd2507b..d6f4de02d6 100644
--- a/sysdeps/libm-ieee754/s_exp2.c
+++ b/sysdeps/libm-ieee754/s_exp2.c
@@ -36,21 +36,23 @@
 
 #include "t_exp2.h"
 
-static const volatile double TWO1000 = 1.071508607186267320948e+301;
+static const volatile double TWO1023 = 8.988465674311579539e+307;
 static const volatile double TWOM1000 = 9.3326361850321887899e-302;
 
 double
 __ieee754_exp2 (double x)
 {
-  static const uint32_t a_inf = 0x7f800000;
+  static const uint32_t a_minf = 0xff800000;
+  static const double himark = (double) DBL_MAX_EXP;
+  static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1) - 1.0;
+
   /* Check for usual case.  */
-  if (isless (x, (double) DBL_MAX_EXP)
-      && isgreater (x, (double) (DBL_MIN_EXP - 1)))
+  if (isless (x, himark) && isgreater (x, lomark))
     {
       static const float TWO43 = 8796093022208.0;
-      int tval;
-      double rx, x22;
-      union ieee754_double ex2_u;
+      int tval, unsafe;
+      double rx, x22, result;
+      union ieee754_double ex2_u, scale_u;
       fenv_t oldenv;
 
       feholdexcept (&oldenv);
@@ -95,37 +97,42 @@ __ieee754_exp2 (double x)
 
       /* 3. Compute ex2 = 2^(t/512+e+ex).  */
       ex2_u.d = exp2_accuratetable[tval & 511];
-      ex2_u.ieee.exponent += tval >> 9;
+      tval >>= 9;
+      unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
+      ex2_u.ieee.exponent += tval >> unsafe;
+      scale_u.d = 1.0;
+      scale_u.ieee.exponent += tval - (tval >> unsafe);
 
       /* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
-	 2^x2 ~= sum(k=0..4 | (x2 * ln(2))^k / k! ) +
-	 so
-	 2^x2 - 1 ~= sum(k=1..4 | (x2 * ln(2))^k / k! )
-	 with error less than 2^(1/1024) * (x2 * ln(2))^5 / 5! < 1.2e-18.  */
+	 with maximum error in [-2^-10-2^-30,2^-10+2^-30]
+	 less than 10^-19.  */
 
-      x22 = (((.0096181291076284772
-	       * x + .055504108664821580)
-	      * x + .240226506959100712)
-	     * x + .69314718055994531) * ex2_u.d;
+      x22 = (((.0096181293647031180
+	       * x + .055504110254308625)
+	      * x + .240226506959100583)
+	     * x + .69314718055994495) * ex2_u.d;
 
       /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */
       fesetenv (&oldenv);
 
-      /* Need to check: does this set FE_INEXACT correctly? */
-      return x22 * x + ex2_u.d;
+      result = x22 * x + ex2_u.d;
+
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.d;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (x == *(const float *) &a_minf)
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM1000 * TWOM1000;
     }
-  /* 2^inf == inf, with no error.  */
-  else if (x == *(const float *) &a_inf)
-    return x;
-  /* Check for overflow.  */
-  else if (isgreaterequal (x, (double) DBL_MAX_EXP))
-    return TWO1000 * TWO1000;
-  /* And underflow (including -inf).  */
-  else if (isless (x, (double) (DBL_MIN_EXP - DBL_MANT_DIG)))
-    return TWOM1000 * TWOM1000;
-  /* Maybe the result needs to be a denormalised number...  */
-  else if (!isnan (x))
-    return __ieee754_exp2 (x + 1000.0) * TWOM1000;
-  else /* isnan(x) */
-    return x + x;
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO1023*x;
 }
diff --git a/sysdeps/libm-ieee754/s_exp2f.c b/sysdeps/libm-ieee754/s_exp2f.c
index 05e79c9f5a..11c5d55e2e 100644
--- a/sysdeps/libm-ieee754/s_exp2f.c
+++ b/sysdeps/libm-ieee754/s_exp2f.c
@@ -38,20 +38,22 @@
 #include "t_exp2f.h"
 
 static const volatile float TWOM100 = 7.88860905e-31;
-static const volatile float huge = 1e+30;
+static const volatile float TWO127 = 1.7014118346e+38;
 
 float
 __ieee754_exp2f (float x)
 {
-  static const uint32_t a_inf = 0x7f800000;
+  static const uint32_t a_minf = 0xff800000;
+  static const float himark = (float) FLT_MAX_EXP;
+  static const float lomark = (float) (FLT_MIN_EXP - FLT_MANT_DIG - 1) - 1.0;
+
   /* Check for usual case.  */
-  if (isless (x, (float) FLT_MAX_EXP)
-      && isgreater (x, (float) (FLT_MIN_EXP - 1)))
+  if (isless (x, himark) && isgreater (x, lomark))
     {
-      static const float TWO16 = 65536.0;
-      int tval;
-      float rx, x22;
-      union ieee754_float ex2_u;
+      static const float TWO15 = 32768.0;
+      int tval, unsafe;
+      float rx, x22, result;
+      union ieee754_float ex2_u, scale_u;
       fenv_t oldenv;
 
       feholdexcept (&oldenv);
@@ -68,13 +70,13 @@ __ieee754_exp2f (float x)
 	 First, calculate rx = ex + t/256.  */
       if (x >= 0)
 	{
-	  rx = x + TWO16;
-	  rx -= TWO16;
+	  rx = x + TWO15;
+	  rx -= TWO15;
 	}
       else
 	{
-	  rx = x - TWO16;
-	  rx += TWO16;
+	  rx = x - TWO15;
++	  rx += TWO15;
 	}
       x -= rx;  /* Compute x=x1. */
       /* Compute tval = (ex*256 + t)+128.
@@ -92,40 +94,43 @@ __ieee754_exp2f (float x)
       /* 'tval & 255' is the same as 'tval%256' except that it's always
 	 positive.
 	 Compute x = x2.  */
-      x -= exp2_deltatable[tval & 255];
+      x -= __exp2_deltatable[tval & 255];
 
       /* 3. Compute ex2 = 2^(t/255+e+ex).  */
-      ex2_u.f = exp2_accuratetable[tval & 255];
-      ex2_u.ieee.exponent += tval >> 8;
+      ex2_u.f = __exp2f_atable[tval & 255];
+      tval >>= 8;
+      unsafe = abs(tval) >= -FLT_MIN_EXP - 1;
+      ex2_u.ieee.exponent += tval >> unsafe;
+      scale_u.f = 1.0;
+      scale_u.ieee.exponent += tval - (tval >> unsafe);
 
       /* 4. Approximate 2^x2 - 1, using a second-degree polynomial,
-	 2^x2 ~= sum(k=0..2 | (x2 * ln(2))^k / k! ) +
-	 so
-	 2^x2 - 1 ~= sum(k=1..4 | (x2 * ln(2))^k / k! )
-	 with error less than 2^(1/512+7e-4) * (x2 * ln(2))^3 / 3! < 1.2e-18.  */
+	 with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]
+	 less than 1.3e-10.  */
 
-      x22 = (.240226507f * x + .6931471806f) * ex2_u.f;
+      x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;
 
       /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */
       fesetenv (&oldenv);
 
-      /* Need to check: does this set FE_INEXACT correctly? */
-      return x22 * x + ex2_u.f;
+      result = x22 * x + ex2_u.f;
+
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.f;
     }
-  /* 2^inf == inf, with no error.  */
-  else if (x == *(const float *)&a_inf)
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
     {
-      return x;
+      if (x == *(const float *) &a_minf)
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM100 * TWOM100;
     }
-  /* Check for overflow.  */
-  else if (isgreaterequal (x, (float) FLT_MAX_EXP))
-    return huge * huge;
-  /* And underflow (including -inf).  */
-  else if (isless (x, (float) (FLT_MIN_EXP - FLT_MANT_DIG)))
-    return TWOM100 * TWOM100;
-  /* Maybe the result needs to be a denormalised number...  */
-  else if (!isnan (x))
-    return __ieee754_exp2f (x + 100.0) * TWOM100;
-  else /* isnan(x) */
-    return x + x;
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO127*x;
 }
diff --git a/sysdeps/libm-ieee754/t_exp.c b/sysdeps/libm-ieee754/t_exp.c
new file mode 100644
index 0000000000..b02b4f55ca
--- /dev/null
+++ b/sysdeps/libm-ieee754/t_exp.c
@@ -0,0 +1,436 @@
+/* Accurate tables for exp().
+   Copyright (C) 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* This table has the property that, for all integers -177 <= i <= 177,
+   exp(i/512.0 + __exp_deltatable[abs(i)]) == __exp_atable[i+177] + r
+   for some -2^-64 < r < 2^-64 (abs(r) < 2^-65 if i <= 0); and that
+   __exp_deltatable[abs(i)] == t * 2^-60
+   for integer t so that abs(t) <= 8847927 * 2^8.  */
+
+#define W52 (2.22044605e-16)
+#define W55 (2.77555756e-17)
+#define W58 (3.46944695e-18)
+#define W59 (1.73472348e-18)
+#define W60 (8.67361738e-19)
+const float __exp_deltatable[178] = {
+         0*W60,  16558714*W60, -10672149*W59,   1441652*W60,
+ -15787963*W55,    462888*W60,   7291806*W60,   1698880*W60,
+ -14375103*W58,  -2021016*W60,    728829*W60,  -3759654*W60,
+   3202123*W60, -10916019*W58,   -251570*W60,  -1043086*W60,
+   8207536*W60,   -409964*W60,  -5993931*W60,   -475500*W60,
+   2237522*W60,    324170*W60,   -244117*W60,     32077*W60,
+    123907*W60,  -1019734*W60,      -143*W60,    813077*W60,
+    743345*W60,    462461*W60,    629794*W60,   2125066*W60,
+  -2339121*W60,   -337951*W60,   9922067*W60,   -648704*W60,
+    149407*W60,  -2687209*W60,   -631608*W60,   2128280*W60,
+  -4882082*W60,   2001360*W60,    175074*W60,   2923216*W60,
+   -538947*W60,  -1212193*W60,  -1920926*W60,  -1080577*W60,
+   3690196*W60,   2643367*W60,   2911937*W60,    671455*W60,
+  -1128674*W60,    593282*W60,  -5219347*W60,  -1941490*W60,
+  11007953*W60,    239609*W60,  -2969658*W60,  -1183650*W60,
+    942998*W60,    699063*W60,    450569*W60,   -329250*W60,
+  -7257875*W60,   -312436*W60,     51626*W60,    555877*W60,
+   -641761*W60,   1565666*W60,    884327*W60, -10960035*W60,
+  -2004679*W60,   -995793*W60,  -2229051*W60,   -146179*W60,
+   -510327*W60,   1453482*W60,  -3778852*W60,  -2238056*W60,
+  -4895983*W60,   3398883*W60,   -252738*W60,   1230155*W60,
+    346918*W60,   1109352*W60,    268941*W60,  -2930483*W60,
+  -1036263*W60,  -1159280*W60,   1328176*W60,   2937642*W60,
+  -9371420*W60,  -6902650*W60,  -1419134*W60,   1442904*W60,
+  -1319056*W60,    -16369*W60,    696555*W60,   -279987*W60,
+  -7919763*W60,    252741*W60,    459711*W60,  -1709645*W60,
+    354913*W60,   6025867*W60,   -421460*W60,   -853103*W60,
+   -338649*W60,    962151*W60,    955965*W60,    784419*W60,
+  -3633653*W60,   2277133*W60,  -8847927*W52,   1223028*W60,
+   5907079*W60,    623167*W60,   5142888*W60,   2599099*W60,
+   1214280*W60,   4870359*W60,    593349*W60,    -57705*W60,
+   7761209*W60,  -5564097*W60,   2051261*W60,   6216869*W60,
+   4692163*W60,    601691*W60,  -5264906*W60,   1077872*W60,
+  -3205949*W60,   1833082*W60,   2081746*W60,   -987363*W60,
+  -1049535*W60,   2015244*W60,    874230*W60,   2168259*W60,
+  -1740124*W60, -10068269*W60,    -18242*W60,  -3013583*W60,
+    580601*W60,  -2547161*W60,   -535689*W60,   2220815*W60,
+   1285067*W60,   2806933*W60,   -983086*W60,  -1729097*W60,
+  -1162985*W60,  -2561904*W60,    801988*W60,    244351*W60,
+   1441893*W60,  -7517981*W60,    271781*W60, -15021588*W60,
+  -2341588*W60,   -919198*W60,   1642232*W60,   4771771*W60,
+  -1220099*W60,  -3062372*W60,    628624*W60,   1278114*W60,
+  13083513*W60, -10521925*W60,   3180310*W60,  -1659307*W60,
+   3543773*W60,   2501203*W60,      4151*W60,   -340748*W60,
+  -2285625*W60,   2495202*W60
+};
+
+const double __exp_atable[355] /* __attribute__((mode(DF))) */ = {
+ 0.707722561055888932371, /* 0x0.b52d4e46605c27ffd */
+ 0.709106182438804188967, /* 0x0.b587fb96f75097ffb */
+ 0.710492508843861281234, /* 0x0.b5e2d649899167ffd */
+ 0.711881545564593931623, /* 0x0.b63dde74d36bdfffe */
+ 0.713273297897442870573, /* 0x0.b699142f945f87ffc */
+ 0.714667771153751463236, /* 0x0.b6f477909c4ea0001 */
+ 0.716064970655995725059, /* 0x0.b75008aec758f8004 */
+ 0.717464901723956938193, /* 0x0.b7abc7a0eea7e0002 */
+ 0.718867569715736398602, /* 0x0.b807b47e1586c7ff8 */
+ 0.720272979947266023271, /* 0x0.b863cf5d10e380003 */
+ 0.721681137825144314297, /* 0x0.b8c01855195c37ffb */
+ 0.723092048691992950199, /* 0x0.b91c8f7d213740004 */
+ 0.724505717938892290800, /* 0x0.b97934ec5002d0007 */
+ 0.725922150953176470431, /* 0x0.b9d608b9c92ea7ffc */
+ 0.727341353138962865022, /* 0x0.ba330afcc29e98003 */
+ 0.728763329918453162104, /* 0x0.ba903bcc8618b7ffc */
+ 0.730188086709957051568, /* 0x0.baed9b40591ba0000 */
+ 0.731615628948127705309, /* 0x0.bb4b296f931e30002 */
+ 0.733045962086486091436, /* 0x0.bba8e671a05617ff9 */
+ 0.734479091556371366251, /* 0x0.bc06d25dd49568001 */
+ 0.735915022857225542529, /* 0x0.bc64ed4bce8f6fff9 */
+ 0.737353761441304711410, /* 0x0.bcc33752f915d7ff9 */
+ 0.738795312814142124419, /* 0x0.bd21b08af98e78005 */
+ 0.740239682467211168593, /* 0x0.bd80590b65e9a8000 */
+ 0.741686875913991849885, /* 0x0.bddf30ebec4a10000 */
+ 0.743136898669507939299, /* 0x0.be3e38443c84e0007 */
+ 0.744589756269486091620, /* 0x0.be9d6f2c1d32a0002 */
+ 0.746045454254026796384, /* 0x0.befcd5bb59baf8004 */
+ 0.747503998175051087583, /* 0x0.bf5c6c09ca84c0003 */
+ 0.748965393601880857739, /* 0x0.bfbc322f5b18b7ff8 */
+ 0.750429646104262104698, /* 0x0.c01c2843f776fffff */
+ 0.751896761271877989160, /* 0x0.c07c4e5fa18b88002 */
+ 0.753366744698445112140, /* 0x0.c0dca49a5fb18fffd */
+ 0.754839601988627206827, /* 0x0.c13d2b0c444db0005 */
+ 0.756315338768691947122, /* 0x0.c19de1cd798578006 */
+ 0.757793960659406629066, /* 0x0.c1fec8f623723fffd */
+ 0.759275473314173443536, /* 0x0.c25fe09e8a0f47ff8 */
+ 0.760759882363831851927, /* 0x0.c2c128dedc88f8000 */
+ 0.762247193485956486805, /* 0x0.c322a1cf7d6e7fffa */
+ 0.763737412354726363781, /* 0x0.c3844b88cb9347ffc */
+ 0.765230544649828092739, /* 0x0.c3e626232bd8f7ffc */
+ 0.766726596071518051729, /* 0x0.c44831b719bf18002 */
+ 0.768225572321911687194, /* 0x0.c4aa6e5d12d078001 */
+ 0.769727479119219348810, /* 0x0.c50cdc2da64a37ffb */
+ 0.771232322196981678892, /* 0x0.c56f7b41744490001 */
+ 0.772740107296721268087, /* 0x0.c5d24bb1259e70004 */
+ 0.774250840160724651565, /* 0x0.c6354d95640dd0007 */
+ 0.775764526565368872643, /* 0x0.c6988106fec447fff */
+ 0.777281172269557396602, /* 0x0.c6fbe61eb1bd0ffff */
+ 0.778800783068235302750, /* 0x0.c75f7cf560942fffc */
+ 0.780323364758801041312, /* 0x0.c7c345a3f1983fffe */
+ 0.781848923151573727006, /* 0x0.c8274043594cb0002 */
+ 0.783377464064598849602, /* 0x0.c88b6cec94b3b7ff9 */
+ 0.784908993312207869935, /* 0x0.c8efcbb89cba27ffe */
+ 0.786443516765346961618, /* 0x0.c9545cc0a88c70003 */
+ 0.787981040257604625744, /* 0x0.c9b9201dc643bfffa */
+ 0.789521569657452682047, /* 0x0.ca1e15e92a5410007 */
+ 0.791065110849462849192, /* 0x0.ca833e3c1ae510005 */
+ 0.792611669712891875319, /* 0x0.cae8992fd84667ffd */
+ 0.794161252150049179450, /* 0x0.cb4e26ddbc207fff8 */
+ 0.795713864077794763584, /* 0x0.cbb3e75f301b60003 */
+ 0.797269511407239561694, /* 0x0.cc19dacd978cd8002 */
+ 0.798828200086368567220, /* 0x0.cc8001427e55d7ffb */
+ 0.800389937624300440456, /* 0x0.cce65ade24d360006 */
+ 0.801954725261124767840, /* 0x0.cd4ce7a5de839fffb */
+ 0.803522573691593189330, /* 0x0.cdb3a7c79a678fffd */
+ 0.805093487311204114563, /* 0x0.ce1a9b563965ffffc */
+ 0.806667472122675088819, /* 0x0.ce81c26b838db8000 */
+ 0.808244534127439906441, /* 0x0.cee91d213f8428002 */
+ 0.809824679342317166307, /* 0x0.cf50ab9144d92fff9 */
+ 0.811407913793616542005, /* 0x0.cfb86dd5758c2ffff */
+ 0.812994243520784198882, /* 0x0.d0206407c20e20005 */
+ 0.814583674571603966162, /* 0x0.d0888e4223facfff9 */
+ 0.816176213022088536960, /* 0x0.d0f0ec9eb3f7c8002 */
+ 0.817771864936188586101, /* 0x0.d1597f377d6768002 */
+ 0.819370636400374108252, /* 0x0.d1c24626a46eafff8 */
+ 0.820972533518165570298, /* 0x0.d22b41865ff1e7ff9 */
+ 0.822577562404315121269, /* 0x0.d2947170f32ec7ff9 */
+ 0.824185729164559344159, /* 0x0.d2fdd60097795fff8 */
+ 0.825797039949601741075, /* 0x0.d3676f4fb796d0001 */
+ 0.827411500902565544264, /* 0x0.d3d13d78b5f68fffb */
+ 0.829029118181348834154, /* 0x0.d43b40960546d8001 */
+ 0.830649897953322891022, /* 0x0.d4a578c222a058000 */
+ 0.832273846408250750368, /* 0x0.d50fe617a3ba78005 */
+ 0.833900969738858188772, /* 0x0.d57a88b1218e90002 */
+ 0.835531274148056613016, /* 0x0.d5e560a94048f8006 */
+ 0.837164765846411529371, /* 0x0.d6506e1aac8078003 */
+ 0.838801451086016225394, /* 0x0.d6bbb1204074e0001 */
+ 0.840441336100884561780, /* 0x0.d72729d4c28518004 */
+ 0.842084427144139224814, /* 0x0.d792d8530e12b0001 */
+ 0.843730730487052604790, /* 0x0.d7febcb61273e7fff */
+ 0.845380252404570153833, /* 0x0.d86ad718c308dfff9 */
+ 0.847032999194574087728, /* 0x0.d8d727962c69d7fff */
+ 0.848688977161248581090, /* 0x0.d943ae49621ce7ffb */
+ 0.850348192619261200615, /* 0x0.d9b06b4d832ef8005 */
+ 0.852010651900976245816, /* 0x0.da1d5ebdc22220005 */
+ 0.853676361342631029337, /* 0x0.da8a88b555baa0006 */
+ 0.855345327311054837175, /* 0x0.daf7e94f965f98004 */
+ 0.857017556155879489641, /* 0x0.db6580a7c98f7fff8 */
+ 0.858693054267390953857, /* 0x0.dbd34ed9617befff8 */
+ 0.860371828028939855647, /* 0x0.dc4153ffc8b65fff9 */
+ 0.862053883854957292436, /* 0x0.dcaf90368bfca8004 */
+ 0.863739228154875360306, /* 0x0.dd1e0399328d87ffe */
+ 0.865427867361348468455, /* 0x0.dd8cae435d303fff9 */
+ 0.867119807911702289458, /* 0x0.ddfb9050b1cee8006 */
+ 0.868815056264353846599, /* 0x0.de6aa9dced8448001 */
+ 0.870513618890481399881, /* 0x0.ded9fb03db7320006 */
+ 0.872215502247877139094, /* 0x0.df4983e1380657ff8 */
+ 0.873920712852848668986, /* 0x0.dfb94490ffff77ffd */
+ 0.875629257204025623884, /* 0x0.e0293d2f1cb01fff9 */
+ 0.877341141814212965880, /* 0x0.e0996dd786fff0007 */
+ 0.879056373217612985183, /* 0x0.e109d6a64f5d57ffc */
+ 0.880774957955916648615, /* 0x0.e17a77b78e72a7ffe */
+ 0.882496902590150900078, /* 0x0.e1eb5127722cc7ff8 */
+ 0.884222213673356738383, /* 0x0.e25c63121fb0c8006 */
+ 0.885950897802399772740, /* 0x0.e2cdad93ec5340003 */
+ 0.887682961567391237685, /* 0x0.e33f30c925fb97ffb */
+ 0.889418411575228162725, /* 0x0.e3b0ecce2d05ffff9 */
+ 0.891157254447957902797, /* 0x0.e422e1bf727718006 */
+ 0.892899496816652704641, /* 0x0.e4950fb9713fc7ffe */
+ 0.894645145323828439008, /* 0x0.e50776d8b0e60fff8 */
+ 0.896394206626591749641, /* 0x0.e57a1739c8fadfffc */
+ 0.898146687421414902124, /* 0x0.e5ecf0f97c5798007 */
+ 0.899902594367530173098, /* 0x0.e660043464e378005 */
+ 0.901661934163603406867, /* 0x0.e6d3510747e150006 */
+ 0.903424713533971135418, /* 0x0.e746d78f06cd97ffd */
+ 0.905190939194458810123, /* 0x0.e7ba97e879c91fffc */
+ 0.906960617885092856864, /* 0x0.e82e92309390b0007 */
+ 0.908733756358986566306, /* 0x0.e8a2c6845544afffa */
+ 0.910510361377119825629, /* 0x0.e9173500c8abc7ff8 */
+ 0.912290439722343249336, /* 0x0.e98bddc30f98b0002 */
+ 0.914073998177417412765, /* 0x0.ea00c0e84bc4c7fff */
+ 0.915861043547953501680, /* 0x0.ea75de8db8094fffe */
+ 0.917651582652244779397, /* 0x0.eaeb36d09d3137ffe */
+ 0.919445622318405764159, /* 0x0.eb60c9ce4ed3dffff */
+ 0.921243169397334638073, /* 0x0.ebd697a43995b0007 */
+ 0.923044230737526172328, /* 0x0.ec4ca06fc7768fffa */
+ 0.924848813220121135342, /* 0x0.ecc2e44e865b6fffb */
+ 0.926656923710931002014, /* 0x0.ed39635df34e70006 */
+ 0.928468569126343790092, /* 0x0.edb01dbbc2f5b7ffa */
+ 0.930283756368834757725, /* 0x0.ee2713859aab57ffa */
+ 0.932102492359406786818, /* 0x0.ee9e44d9342870004 */
+ 0.933924784042873379360, /* 0x0.ef15b1d4635438005 */
+ 0.935750638358567643520, /* 0x0.ef8d5a94f60f50007 */
+ 0.937580062297704630580, /* 0x0.f0053f38f345cffff */
+ 0.939413062815381727516, /* 0x0.f07d5fde3a2d98001 */
+ 0.941249646905368053689, /* 0x0.f0f5bca2d481a8004 */
+ 0.943089821583810716806, /* 0x0.f16e55a4e497d7ffe */
+ 0.944933593864477061592, /* 0x0.f1e72b028a2827ffb */
+ 0.946780970781518460559, /* 0x0.f2603cd9fb5430001 */
+ 0.948631959382661205081, /* 0x0.f2d98b497d2a87ff9 */
+ 0.950486566729423554277, /* 0x0.f353166f63e3dffff */
+ 0.952344799896018723290, /* 0x0.f3ccde6a11ae37ffe */
+ 0.954206665969085765512, /* 0x0.f446e357f66120000 */
+ 0.956072172053890279009, /* 0x0.f4c12557964f0fff9 */
+ 0.957941325265908139014, /* 0x0.f53ba48781046fffb */
+ 0.959814132734539637840, /* 0x0.f5b66106555d07ffa */
+ 0.961690601603558903308, /* 0x0.f6315af2c2027fffc */
+ 0.963570739036113010927, /* 0x0.f6ac926b8aeb80004 */
+ 0.965454552202857141381, /* 0x0.f728078f7c5008002 */
+ 0.967342048278315158608, /* 0x0.f7a3ba7d66a908001 */
+ 0.969233234469444204768, /* 0x0.f81fab543e1897ffb */
+ 0.971128118008140250896, /* 0x0.f89bda33122c78007 */
+ 0.973026706099345495256, /* 0x0.f9184738d4cf97ff8 */
+ 0.974929006031422851235, /* 0x0.f994f284d3a5c0008 */
+ 0.976835024947348973265, /* 0x0.fa11dc35bc7820002 */
+ 0.978744770239899142285, /* 0x0.fa8f046b4fb7f8007 */
+ 0.980658249138918636210, /* 0x0.fb0c6b449ab1cfff9 */
+ 0.982575468959622777535, /* 0x0.fb8a10e1088fb7ffa */
+ 0.984496437054508843888, /* 0x0.fc07f5602d79afffc */
+ 0.986421160608523028820, /* 0x0.fc8618e0e55e47ffb */
+ 0.988349647107594098099, /* 0x0.fd047b83571b1fffa */
+ 0.990281903873210800357, /* 0x0.fd831d66f4c018002 */
+ 0.992217938695037382475, /* 0x0.fe01fead3320bfff8 */
+ 0.994157757657894713987, /* 0x0.fe811f703491e8006 */
+ 0.996101369488558541238, /* 0x0.ff007fd5744490005 */
+ 0.998048781093141101932, /* 0x0.ff801ffa9b9280007 */
+ 1.000000000000000000000, /* 0x1.00000000000000000 */
+ 1.001955033605393285965, /* 0x1.0080200565d29ffff */
+ 1.003913889319761887310, /* 0x1.0100802aa0e80fff0 */
+ 1.005876574715736104818, /* 0x1.01812090377240007 */
+ 1.007843096764807100351, /* 0x1.020201541aad7fff6 */
+ 1.009813464316352327214, /* 0x1.0283229c4c9820007 */
+ 1.011787683565730677817, /* 0x1.030484836910a000e */
+ 1.013765762469146736174, /* 0x1.0386272b9c077fffe */
+ 1.015747708536026694351, /* 0x1.04080ab526304fff0 */
+ 1.017733529475172815584, /* 0x1.048a2f412375ffff0 */
+ 1.019723232714418781378, /* 0x1.050c94ef7ad5e000a */
+ 1.021716825883923762690, /* 0x1.058f3be0f1c2d0004 */
+ 1.023714316605201180057, /* 0x1.06122436442e2000e */
+ 1.025715712440059545995, /* 0x1.06954e0fec63afff2 */
+ 1.027721021151397406936, /* 0x1.0718b98f41c92fff6 */
+ 1.029730250269221158939, /* 0x1.079c66d49bb2ffff1 */
+ 1.031743407506447551857, /* 0x1.082056011a9230009 */
+ 1.033760500517691527387, /* 0x1.08a487359ebd50002 */
+ 1.035781537016238873464, /* 0x1.0928fa93490d4fff3 */
+ 1.037806524719013578963, /* 0x1.09adb03b3e5b3000d */
+ 1.039835471338248051878, /* 0x1.0a32a84e9e5760004 */
+ 1.041868384612101516848, /* 0x1.0ab7e2eea5340ffff */
+ 1.043905272300907460835, /* 0x1.0b3d603ca784f0009 */
+ 1.045946142174331239262, /* 0x1.0bc3205a042060000 */
+ 1.047991002016745332165, /* 0x1.0c4923682a086fffe */
+ 1.050039859627715177527, /* 0x1.0ccf698898f3a000d */
+ 1.052092722826109660856, /* 0x1.0d55f2dce5d1dfffb */
+ 1.054149599440827866881, /* 0x1.0ddcbf86b09a5fff6 */
+ 1.056210497317612961855, /* 0x1.0e63cfa7abc97fffd */
+ 1.058275424318780855142, /* 0x1.0eeb23619c146fffb */
+ 1.060344388322010722446, /* 0x1.0f72bad65714bffff */
+ 1.062417397220589476718, /* 0x1.0ffa9627c38d30004 */
+ 1.064494458915699715017, /* 0x1.1082b577d0eef0003 */
+ 1.066575581342167566880, /* 0x1.110b18e893a90000a */
+ 1.068660772440545025953, /* 0x1.1193c09c267610006 */
+ 1.070750040138235936705, /* 0x1.121cacb4959befff6 */
+ 1.072843392435016474095, /* 0x1.12a5dd543cf36ffff */
+ 1.074940837302467588937, /* 0x1.132f529d59552000b */
+ 1.077042382749654914030, /* 0x1.13b90cb250d08fff5 */
+ 1.079148036789447484528, /* 0x1.14430bb58da3dfff9 */
+ 1.081257807444460983297, /* 0x1.14cd4fc984c4a000e */
+ 1.083371702785017154417, /* 0x1.1557d910df9c7000e */
+ 1.085489730853784307038, /* 0x1.15e2a7ae292d30002 */
+ 1.087611899742884524772, /* 0x1.166dbbc422d8c0004 */
+ 1.089738217537583819804, /* 0x1.16f9157586772ffff */
+ 1.091868692357631731528, /* 0x1.1784b4e533cacfff0 */
+ 1.094003332327482702577, /* 0x1.18109a360fc23fff2 */
+ 1.096142145591650907149, /* 0x1.189cc58b155a70008 */
+ 1.098285140311341168136, /* 0x1.1929370751ea50002 */
+ 1.100432324652149906842, /* 0x1.19b5eecdd79cefff0 */
+ 1.102583706811727015711, /* 0x1.1a42ed01dbdba000e */
+ 1.104739294993289488947, /* 0x1.1ad031c69a2eafff0 */
+ 1.106899097422573863281, /* 0x1.1b5dbd3f66e120003 */
+ 1.109063122341542140286, /* 0x1.1beb8f8fa8150000b */
+ 1.111231377994659874592, /* 0x1.1c79a8dac6ad0fff4 */
+ 1.113403872669181282605, /* 0x1.1d0809445a97ffffc */
+ 1.115580614653132185460, /* 0x1.1d96b0effc9db000e */
+ 1.117761612217810673898, /* 0x1.1e25a001332190000 */
+ 1.119946873713312474002, /* 0x1.1eb4d69bdb2a9fff1 */
+ 1.122136407473298902480, /* 0x1.1f4454e3bfae00006 */
+ 1.124330221845670330058, /* 0x1.1fd41afcbb48bfff8 */
+ 1.126528325196519908506, /* 0x1.2064290abc98c0001 */
+ 1.128730725913251964394, /* 0x1.20f47f31c9aa7000f */
+ 1.130937432396844410880, /* 0x1.21851d95f776dfff0 */
+ 1.133148453059692917203, /* 0x1.2216045b6784efffa */
+ 1.135363796355857157764, /* 0x1.22a733a6692ae0004 */
+ 1.137583470716100553249, /* 0x1.2338ab9b3221a0004 */
+ 1.139807484614418608939, /* 0x1.23ca6c5e27aadfff7 */
+ 1.142035846532929888057, /* 0x1.245c7613b7f6c0004 */
+ 1.144268564977221958089, /* 0x1.24eec8e06b035000c */
+ 1.146505648458203463465, /* 0x1.258164e8cea85fff8 */
+ 1.148747105501412235671, /* 0x1.26144a5180d380009 */
+ 1.150992944689175123667, /* 0x1.26a7793f5de2efffa */
+ 1.153243174560058870217, /* 0x1.273af1d712179000d */
+ 1.155497803703682491111, /* 0x1.27ceb43d81d42fff1 */
+ 1.157756840726344771440, /* 0x1.2862c097a3d29000c */
+ 1.160020294239811677834, /* 0x1.28f7170a74cf4fff1 */
+ 1.162288172883275239058, /* 0x1.298bb7bb0faed0004 */
+ 1.164560485298402170388, /* 0x1.2a20a2ce920dffff4 */
+ 1.166837240167474476460, /* 0x1.2ab5d86a4631ffff6 */
+ 1.169118446164539637555, /* 0x1.2b4b58b36d5220009 */
+ 1.171404112007080167155, /* 0x1.2be123cf786790002 */
+ 1.173694246390975415341, /* 0x1.2c7739e3c0aac000d */
+ 1.175988858069749065617, /* 0x1.2d0d9b15deb58fff6 */
+ 1.178287955789017793514, /* 0x1.2da4478b627040002 */
+ 1.180591548323240091978, /* 0x1.2e3b3f69fb794fffc */
+ 1.182899644456603782686, /* 0x1.2ed282d76421d0004 */
+ 1.185212252993012693694, /* 0x1.2f6a11f96c685fff3 */
+ 1.187529382762033236513, /* 0x1.3001ecf60082ffffa */
+ 1.189851042595508889847, /* 0x1.309a13f30f28a0004 */
+ 1.192177241354644978669, /* 0x1.31328716a758cfff7 */
+ 1.194507987909589896687, /* 0x1.31cb4686e1e85fffb */
+ 1.196843291137896336843, /* 0x1.32645269dfd04000a */
+ 1.199183159977805113226, /* 0x1.32fdaae604c39000f */
+ 1.201527603343041317132, /* 0x1.339750219980dfff3 */
+ 1.203876630171082595692, /* 0x1.3431424300e480007 */
+ 1.206230249419600664189, /* 0x1.34cb8170b3fee000e */
+ 1.208588470077065268869, /* 0x1.35660dd14dbd4fffc */
+ 1.210951301134513435915, /* 0x1.3600e78b6bdfc0005 */
+ 1.213318751604272271958, /* 0x1.369c0ec5c38ebfff2 */
+ 1.215690830512196507537, /* 0x1.373783a718d29000f */
+ 1.218067546930756250870, /* 0x1.37d3465662f480007 */
+ 1.220448909901335365929, /* 0x1.386f56fa770fe0008 */
+ 1.222834928513994334780, /* 0x1.390bb5ba5fc540004 */
+ 1.225225611877684750397, /* 0x1.39a862bd3c7a8fff3 */
+ 1.227620969111500981433, /* 0x1.3a455e2a37bcafffd */
+ 1.230021009336254911271, /* 0x1.3ae2a8287dfbefff6 */
+ 1.232425741726685064472, /* 0x1.3b8040df76f39fffa */
+ 1.234835175450728295084, /* 0x1.3c1e287682e48fff1 */
+ 1.237249319699482263931, /* 0x1.3cbc5f151b86bfff8 */
+ 1.239668183679933477545, /* 0x1.3d5ae4e2cc0a8000f */
+ 1.242091776620540377629, /* 0x1.3df9ba07373bf0006 */
+ 1.244520107762172811399, /* 0x1.3e98deaa0d8cafffe */
+ 1.246953186383919165383, /* 0x1.3f3852f32973efff0 */
+ 1.249391019292643401078, /* 0x1.3fd816ffc72b90001 */
+ 1.251833623164381181797, /* 0x1.40782b17863250005 */
+ 1.254280999953110153911, /* 0x1.41188f42caf400000 */
+ 1.256733161434815393410, /* 0x1.41b943b42945bfffd */
+ 1.259190116985283935980, /* 0x1.425a4893e5f10000a */
+ 1.261651875958665236542, /* 0x1.42fb9e0a2df4c0009 */
+ 1.264118447754797758244, /* 0x1.439d443f608c4fff9 */
+ 1.266589841787181258708, /* 0x1.443f3b5bebf850008 */
+ 1.269066067469190262045, /* 0x1.44e183883e561fff7 */
+ 1.271547134259576328224, /* 0x1.45841cecf7a7a0001 */
+ 1.274033051628237434048, /* 0x1.462707b2c43020009 */
+ 1.276523829025464573684, /* 0x1.46ca44023aa410007 */
+ 1.279019475999373156531, /* 0x1.476dd2045d46ffff0 */
+ 1.281520002043128991825, /* 0x1.4811b1e1f1f19000b */
+ 1.284025416692967214122, /* 0x1.48b5e3c3edd74fff4 */
+ 1.286535729509738823464, /* 0x1.495a67d3613c8fff7 */
+ 1.289050950070396384145, /* 0x1.49ff3e396e19d000b */
+ 1.291571087985403654081, /* 0x1.4aa4671f5b401fff1 */
+ 1.294096152842774794011, /* 0x1.4b49e2ae56d19000d */
+ 1.296626154297237043484, /* 0x1.4befb10fd84a3fff4 */
+ 1.299161101984141142272, /* 0x1.4c95d26d41d84fff8 */
+ 1.301701005575179204100, /* 0x1.4d3c46f01d9f0fff3 */
+ 1.304245874766450485904, /* 0x1.4de30ec21097d0003 */
+ 1.306795719266019562007, /* 0x1.4e8a2a0ccce3d0002 */
+ 1.309350548792467483458, /* 0x1.4f3198fa10346fff5 */
+ 1.311910373099227200545, /* 0x1.4fd95bb3be8cffffd */
+ 1.314475201942565174546, /* 0x1.50817263bf0e5fffb */
+ 1.317045045107389400535, /* 0x1.5129dd3418575000e */
+ 1.319619912422941299109, /* 0x1.51d29c4f01c54ffff */
+ 1.322199813675649204855, /* 0x1.527bafde83a310009 */
+ 1.324784758729532718739, /* 0x1.5325180cfb8b3fffd */
+ 1.327374757430096474625, /* 0x1.53ced504b2bd0fff4 */
+ 1.329969819671041886272, /* 0x1.5478e6f02775e0001 */
+ 1.332569955346704748651, /* 0x1.55234df9d8a59fff8 */
+ 1.335175174370685002822, /* 0x1.55ce0a4c5a6a9fff6 */
+ 1.337785486688218616860, /* 0x1.56791c1263abefff7 */
+ 1.340400902247843806217, /* 0x1.57248376aef21fffa */
+ 1.343021431036279800211, /* 0x1.57d040a420c0bfff3 */
+ 1.345647083048053138662, /* 0x1.587c53c5a630f0002 */
+ 1.348277868295411074918, /* 0x1.5928bd063fd7bfff9 */
+ 1.350913796821875845231, /* 0x1.59d57c9110ad60006 */
+ 1.353554878672557082439, /* 0x1.5a8292913d68cfffc */
+ 1.356201123929036356254, /* 0x1.5b2fff3212db00007 */
+ 1.358852542671913132777, /* 0x1.5bddc29edcc06fff3 */
+ 1.361509145047255398051, /* 0x1.5c8bdd032ed16000f */
+ 1.364170941142184734180, /* 0x1.5d3a4e8a5bf61fff4 */
+ 1.366837941171020309735, /* 0x1.5de9176042f1effff */
+ 1.369510155261156381121, /* 0x1.5e9837b062f4e0005 */
+ 1.372187593620959988833, /* 0x1.5f47afa69436cfff1 */
+ 1.374870266463378287715, /* 0x1.5ff77f6eb3f8cfffd */
+ 1.377558184010425845733, /* 0x1.60a7a734a9742fff9 */
+ 1.380251356531521533853, /* 0x1.6158272490016000c */
+ 1.382949794301995272203, /* 0x1.6208ff6a8978a000f */
+ 1.385653507605306700170, /* 0x1.62ba3032c0a280004 */
+ 1.388362506772382154503, /* 0x1.636bb9a994784000f */
+ 1.391076802081129493127, /* 0x1.641d9bfb29a7bfff6 */
+ 1.393796403973427855412, /* 0x1.64cfd7545928b0002 */
+ 1.396521322756352656542, /* 0x1.65826be167badfff8 */
+ 1.399251568859207761660, /* 0x1.663559cf20826000c */
+ 1.401987152677323100733, /* 0x1.66e8a14a29486fffc */
+ 1.404728084651919228815, /* 0x1.679c427f5a4b6000b */
+ 1.407474375243217723560, /* 0x1.68503d9ba0add000f */
+ 1.410226034922914983815, /* 0x1.690492cbf6303fff9 */
+ 1.412983074197955213304, /* 0x1.69b9423d7b548fff6 */
+};
diff --git a/sysdeps/libm-ieee754/t_exp2f.h b/sysdeps/libm-ieee754/t_exp2f.h
index 0f7674cefb..e15d15787c 100644
--- a/sysdeps/libm-ieee754/t_exp2f.h
+++ b/sysdeps/libm-ieee754/t_exp2f.h
@@ -1,301 +1,352 @@
-/* These values are accurate to 23+9 bits when represented as
-   a float.  */
-static const float exp2_accuratetable[256] = {
-0.70711034541 /* 0x0.b5052f003 */,
-0.70903021104 /* 0x0.b58301004 */,
-0.71092861900 /* 0x0.b5ff6b006 */,
-0.71286851176 /* 0x0.b67e8d006 */,
-0.71481245762 /* 0x0.b6fdf3004 */,
-0.71673321725 /* 0x0.b77bd4001 */,
-0.71868461379 /* 0x0.b7fbb7006 */,
-0.72064983853 /* 0x0.b87c82006 */,
-0.72258073096 /* 0x0.b8fb0d003 */,
-0.72456008199 /* 0x0.b97cc5002 */,
-0.72652846578 /* 0x0.b9fdc5002 */,
-0.72848570353 /* 0x0.ba7e0a004 */,
-0.73046034578 /* 0x0.baff73003 */,
-0.73244112730 /* 0x0.bb8143000 */,
-0.73443359139 /* 0x0.bc03d7002 */,
-0.73646944762 /* 0x0.bc8943000 */,
-0.73839598903 /* 0x0.bd0785006 */,
-0.74041211608 /* 0x0.bd8ba6002 */,
-0.74243509775 /* 0x0.be103a004 */,
-0.74444299943 /* 0x0.be93d1004 */,
-0.74646854405 /* 0x0.bf1890003 */,
-0.74849390993 /* 0x0.bf9d4c006 */,
-0.75051373248 /* 0x0.c021ab003 */,
-0.75252974037 /* 0x0.c0a5ca002 */,
-0.75460278996 /* 0x0.c12da6006 */,
-0.75663453342 /* 0x0.c1b2cd001 */,
-0.75867807874 /* 0x0.c238ba006 */,
-0.76072299481 /* 0x0.c2bebe000 */,
-0.76271909478 /* 0x0.c3418f002 */,
-0.76482868204 /* 0x0.c3cbd0006 */,
-0.76694220311 /* 0x0.c45653004 */,
-0.76902121311 /* 0x0.c4de93003 */,
-0.77110719688 /* 0x0.c56748005 */,
-0.77314376835 /* 0x0.c5ecc0003 */,
-0.77531152970 /* 0x0.c67ad1004 */,
-0.77739948042 /* 0x0.c703a7005 */,
-0.77948719274 /* 0x0.c78c79007 */,
-0.78161448246 /* 0x0.c817e3004 */,
-0.78381162885 /* 0x0.c8a7e1002 */,
-0.78587090971 /* 0x0.c92ed6001 */,
-0.78799921275 /* 0x0.c9ba51001 */,
-0.79011362800 /* 0x0.ca44e3006 */,
-0.79225623615 /* 0x0.cad14e005 */,
-0.79441082487 /* 0x0.cb5e82006 */,
-0.79654645924 /* 0x0.cbea78003 */,
-0.79873132707 /* 0x0.cc79a8001 */,
-0.80093026168 /* 0x0.cd09c4005 */,
-0.80304825308 /* 0x0.cd9492001 */,
-0.80526113516 /* 0x0.ce2598004 */,
-0.80742740634 /* 0x0.ceb390002 */,
-0.80963188410 /* 0x0.cf4409000 */,
-0.81180763254 /* 0x0.cfd2a0006 */,
-0.81401169308 /* 0x0.d06312005 */,
-0.81622666121 /* 0x0.d0f43b000 */,
-0.81843453653 /* 0x0.d184ed005 */,
-0.82070738078 /* 0x0.d219e1001 */,
-0.82289630179 /* 0x0.d2a955003 */,
-0.82509487868 /* 0x0.d3396b000 */,
-0.82737630616 /* 0x0.d3ceef007 */,
-0.82961845408 /* 0x0.d461e0007 */,
-0.83179849386 /* 0x0.d4f0bf000 */,
-0.83408612023 /* 0x0.d586ab007 */,
-0.83636939536 /* 0x0.d61c4e007 */,
-0.83862531186 /* 0x0.d6b026000 */,
-0.84094470740 /* 0x0.d74827000 */,
-0.84316509971 /* 0x0.d7d9ab006 */,
-0.84546715027 /* 0x0.d87089004 */,
-0.84781247378 /* 0x0.d90a3d000 */,
-0.85004067431 /* 0x0.d99c44007 */,
-0.85237431530 /* 0x0.da3534003 */,
-0.85468208790 /* 0x0.dacc72000 */,
-0.85696077349 /* 0x0.db61c8002 */,
-0.85931611062 /* 0x0.dbfc24000 */,
-0.86171466122 /* 0x0.dc9955007 */,
-0.86397939929 /* 0x0.dd2dc1006 */,
-0.86633706098 /* 0x0.ddc844004 */,
-0.86868536481 /* 0x0.de622a006 */,
-0.87101131681 /* 0x0.defa99002 */,
-0.87337517739 /* 0x0.df9584000 */,
-0.87576484682 /* 0x0.e03220001 */,
-0.87814646969 /* 0x0.e0ce35007 */,
-0.88050335648 /* 0x0.e168ab002 */,
-0.88291734457 /* 0x0.e206df000 */,
-0.88522624975 /* 0x0.e29e30004 */,
-0.88768237833 /* 0x0.e33f27003 */,
-0.89007008077 /* 0x0.e3dba2001 */,
-0.89250904327 /* 0x0.e47b79004 */,
-0.89490824949 /* 0x0.e518b5007 */,
-0.89735335113 /* 0x0.e5b8f3001 */,
-0.89977204799 /* 0x0.e65776000 */,
-0.90221023561 /* 0x0.e6f740001 */,
-0.90468037137 /* 0x0.e79922006 */,
-0.90711551909 /* 0x0.e838b9003 */,
-0.90958660844 /* 0x0.e8daab002 */,
-0.91205561170 /* 0x0.e97c7a006 */,
-0.91451990614 /* 0x0.ea1dfa006 */,
-0.91699457179 /* 0x0.eac028007 */,
-0.91948717833 /* 0x0.eb6383000 */,
-0.92201787240 /* 0x0.ec095d004 */,
-0.92446959027 /* 0x0.ecaa0a006 */,
-0.92700457577 /* 0x0.ed502c003 */,
-0.92946064473 /* 0x0.edf122000 */,
-0.93202102187 /* 0x0.ee98ee001 */,
-0.93454003345 /* 0x0.ef3e04007 */,
-0.93707615143 /* 0x0.efe439004 */,
-0.93964391957 /* 0x0.f08c81007 */,
-0.94217014323 /* 0x0.f13210007 */,
-0.94470518835 /* 0x0.f1d833005 */,
-0.94727593667 /* 0x0.f280ad004 */,
-0.94985383753 /* 0x0.f3299f002 */,
-0.95245110992 /* 0x0.f3d3d6002 */,
-0.95500063903 /* 0x0.f47aec004 */,
-0.95758175857 /* 0x0.f52414004 */,
-0.96018302447 /* 0x0.f5ce8e004 */,
-0.96279788024 /* 0x0.f679ec005 */,
-0.96541762355 /* 0x0.f7259c002 */,
-0.96803289660 /* 0x0.f7d101005 */,
-0.97066921004 /* 0x0.f87dc7006 */,
-0.97328519823 /* 0x0.f92938001 */,
-0.97589331867 /* 0x0.f9d425001 */,
-0.97858297827 /* 0x0.fa846a001 */,
-0.98121380814 /* 0x0.fb30d4005 */,
-0.98389244083 /* 0x0.fbe060002 */,
-0.98657202723 /* 0x0.fc8ffc001 */,
-0.98919564488 /* 0x0.fd3bed001 */,
-0.99194401506 /* 0x0.fdf00b002 */,
-0.99460238224 /* 0x0.fe9e43004 */,
-0.99728542574 /* 0x0.ff4e19005 */,
-1.00000000000 /* 0x1.000000000 */,
-1.00271666054 /* 0x1.00b20a003 */,
-1.00544095058 /* 0x1.01649400c */,
-1.00819313547 /* 0x1.0218f200e */,
-1.01089513312 /* 0x1.02ca06007 */,
-1.01363527782 /* 0x1.037d9a005 */,
-1.01635849497 /* 0x1.04301200e */,
-1.01918780808 /* 0x1.04e97e003 */,
-1.02182090297 /* 0x1.05960e00a */,
-1.02468311789 /* 0x1.0651a2002 */,
-1.02744102491 /* 0x1.070660009 */,
-1.03019988541 /* 0x1.07bb2e002 */,
-1.03300857552 /* 0x1.087340005 */,
-1.03580951708 /* 0x1.092ad000b */,
-1.03865504271 /* 0x1.09e54c004 */,
-1.04145348082 /* 0x1.0a9cb2007 */,
-1.04426109801 /* 0x1.0b54b2007 */,
-1.04706287389 /* 0x1.0c0c50003 */,
-1.04996109020 /* 0x1.0cca40007 */,
-1.05282557024 /* 0x1.0d85fa009 */,
-1.05564439314 /* 0x1.0e3eb600c */,
-1.05850863475 /* 0x1.0efa6c00c */,
-1.06137108805 /* 0x1.0fb604001 */,
-1.06423723713 /* 0x1.1071da00a */,
-1.06716394429 /* 0x1.1131a8003 */,
-1.07004547127 /* 0x1.11ee80005 */,
-1.07294559497 /* 0x1.12ac9000c */,
-1.07586789139 /* 0x1.136c14005 */,
-1.07873940478 /* 0x1.142844007 */,
-1.08172726651 /* 0x1.14ec1400e */,
-1.08459246171 /* 0x1.15a7da008 */,
-1.08752059939 /* 0x1.1667c0001 */,
-1.09050178536 /* 0x1.172b20005 */,
-1.09349620361 /* 0x1.17ef5e00d */,
-1.09634935875 /* 0x1.18aa5a00d */,
-1.09940552720 /* 0x1.1972a4006 */,
-1.10237383858 /* 0x1.1a352c00a */,
-1.10530221471 /* 0x1.1af516006 */,
-1.10838031771 /* 0x1.1bbed0001 */,
-1.11137616648 /* 0x1.1c8326009 */,
-1.11441528816 /* 0x1.1d4a5200d */,
-1.11741960066 /* 0x1.1e0f3600c */,
-1.12044525152 /* 0x1.1ed580003 */,
-1.12346303485 /* 0x1.1f9b4600f */,
-1.12655401230 /* 0x1.2065d8000 */,
-1.12955987463 /* 0x1.212ad6007 */,
-1.13263440148 /* 0x1.21f45400b */,
-1.13567769541 /* 0x1.22bbc6009 */,
-1.13877141483 /* 0x1.238686005 */,
-1.14189016826 /* 0x1.2452ea004 */,
-1.14495265504 /* 0x1.251b9e00e */,
-1.14807951452 /* 0x1.25e88a001 */,
-1.15118837366 /* 0x1.26b448006 */,
-1.15428590795 /* 0x1.277f4800e */,
-1.15744590761 /* 0x1.284e60001 */,
-1.16055941596 /* 0x1.291a6c00a */,
-1.16371822369 /* 0x1.29e970008 */,
-1.16683173193 /* 0x1.2ab57c009 */,
-1.17002511035 /* 0x1.2b86c4007 */,
-1.17321026344 /* 0x1.2c578200d */,
-1.17639815811 /* 0x1.2d286e002 */,
-1.17961537856 /* 0x1.2dfb4600c */,
-1.18278920671 /* 0x1.2ecb4600e */,
-1.18602204342 /* 0x1.2f9f2400d */,
-1.18924140952 /* 0x1.30722000f */,
-1.19246912021 /* 0x1.3145a800c */,
-1.19566547881 /* 0x1.321722007 */,
-1.19890022298 /* 0x1.32eb2000e */,
-1.20205938816 /* 0x1.33ba2a000 */,
-1.20533752458 /* 0x1.34910000b */,
-1.20865476136 /* 0x1.356a66003 */,
-1.21195018302 /* 0x1.36425e007 */,
-1.21525228034 /* 0x1.371ac6007 */,
-1.21851313125 /* 0x1.37f07a007 */,
-1.22183310988 /* 0x1.38ca0e001 */,
-1.22516608253 /* 0x1.39a47c00a */,
-1.22848713419 /* 0x1.3a7e2200f */,
-1.23174583912 /* 0x1.3b53b2000 */,
-1.23522067082 /* 0x1.3c376c008 */,
-1.23849928397 /* 0x1.3d0e4a00c */,
-1.24181902431 /* 0x1.3de7da00f */,
-1.24523758889 /* 0x1.3ec7e4001 */,
-1.24859035038 /* 0x1.3fa39e00f */,
-1.25193393249 /* 0x1.407ebe00d */,
-1.25539278994 /* 0x1.41616c007 */,
-1.25880420214 /* 0x1.4240fe004 */,
-1.26223969480 /* 0x1.43222400e */,
-1.26558542253 /* 0x1.43fd68001 */,
-1.26904225354 /* 0x1.44dff4003 */,
-1.27251851576 /* 0x1.45c3c600c */,
-1.27593302748 /* 0x1.46a38c00f */,
-1.27941727649 /* 0x1.4787e4007 */,
-1.28286683578 /* 0x1.4869f600d */,
-1.28636789342 /* 0x1.494f6800e */,
-1.28982734693 /* 0x1.4a3220009 */,
-1.29335498813 /* 0x1.4b1950002 */,
-1.29684555547 /* 0x1.4bfe1200b */,
-1.30039131655 /* 0x1.4ce672009 */,
-1.30388665216 /* 0x1.4dcb8400b */,
-1.30738770972 /* 0x1.4eb0f6007 */,
-1.31095492852 /* 0x1.4f9abe008 */,
-1.31452167056 /* 0x1.50847e00f */,
-1.31807971017 /* 0x1.516dac00b */,
-1.32168746004 /* 0x1.525a1c006 */,
-1.32518649117 /* 0x1.533f6c00b */,
-1.32884454737 /* 0x1.542f28007 */,
-1.33244597914 /* 0x1.551b2e002 */,
-1.33601069461 /* 0x1.5604cc007 */,
-1.33969032765 /* 0x1.56f5f2000 */,
-1.34328985233 /* 0x1.57e1d800d */,
-1.34692609319 /* 0x1.58d026006 */,
-1.35055744648 /* 0x1.59be22000 */,
-1.35424625891 /* 0x1.5aafe200c */,
-1.35795569436 /* 0x1.5ba2fc00b */,
-1.36158764384 /* 0x1.5c910200e */,
-1.36525344864 /* 0x1.5d814000a */,
-1.36908590815 /* 0x1.5e7c6a00e */,
-1.37272357954 /* 0x1.5f6ad0009 */,
-1.37639832498 /* 0x1.605ba4001 */,
-1.38020527377 /* 0x1.615522009 */,
-1.38388323800 /* 0x1.62462c00b */,
-1.38770687583 /* 0x1.6340c2002 */,
-1.39144265656 /* 0x1.643596003 */,
-1.39518976211 /* 0x1.652b28000 */,
-1.39905631551 /* 0x1.66288e006 */,
-1.40280294419 /* 0x1.671e18000 */,
-1.40661609194 /* 0x1.6817fe00e */,
-1.41035604489 /* 0x1.690d18008 */
+/* Accurate tables for exp2f().
+   Copyright (C) 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* This table has the property that, for all integers -128 <= i <= 127,
+   exp(i/256.0 + __exp2f_deltatable[i-128]) == __exp2f_atable[i+128] + r
+   for some -2^-35 < r < 2^-35 (abs(r) < 2^-36 if i <= 0); and that
+   __exp2f_deltatable[i+128] == t * 2^-30
+   for integer t so that abs(t) <= 43447 * 2^0.  */
+
+#define W30 (9.31322575e-10)
+static const float __exp2f_deltatable[256] = {
+      -810*W30,       283*W30,     -1514*W30,      1304*W30,
+     -1148*W30,       -98*W30,      -744*W30,      -156*W30,
+      -419*W30,      -155*W30,       474*W30,       167*W30,
+     -1984*W30,      -826*W30,       692*W30,       781*W30,
+      -578*W30,      -411*W30,      -129*W30,     -1500*W30,
+       654*W30,      -141*W30,      -816*W30,       -53*W30,
+       148*W30,       493*W30,     -2214*W30,       760*W30,
+       260*W30,       750*W30,     -1300*W30,      1424*W30,
+     -1445*W30,      -339*W30,      -680*W30,      -349*W30,
+      -922*W30,       531*W30,       193*W30,     -2892*W30,
+       290*W30,     -2145*W30,      -276*W30,       485*W30,
+      -695*W30,       215*W30,     -7093*W30,       412*W30,
+     -4596*W30,       367*W30,       592*W30,      -615*W30,
+       -97*W30,     -1066*W30,       972*W30,      -226*W30,
+      -625*W30,      -374*W30,     -5647*W30,      -180*W30,
+     20349*W30,      -447*W30,       111*W30,     -4164*W30,
+       -87*W30,       -21*W30,      -251*W30,        66*W30,
+      -517*W30,      2093*W30,      -263*W30,       182*W30,
+      -601*W30,       475*W30,      -483*W30,     -1251*W30,
+      -373*W30,      1471*W30,       -92*W30,      -215*W30,
+       -97*W30,      -190*W30,         0*W30,      -290*W30,
+     -2647*W30,      1940*W30,      -582*W30,        28*W30,
+       833*W30,      1493*W30,        34*W30,       321*W30,
+      3327*W30,       -35*W30,       177*W30,      -135*W30,
+      -796*W30,      -428*W30,       129*W30,      9332*W30,
+       -12*W30,       -69*W30,     -1743*W30,      6508*W30,
+       -60*W30,       359*W30,     43447*W30,        15*W30,
+       -23*W30,      -305*W30,      -375*W30,      -652*W30,
+       667*W30,       269*W30,     -1575*W30,       185*W30,
+      -329*W30,       200*W30,      6002*W30,       163*W30,
+      -647*W30,        19*W30,      -603*W30,      -755*W30,
+       742*W30,      -438*W30,      3587*W30,      2560*W30,
+         0*W30,      -520*W30,      -241*W30,      -299*W30,
+     -1270*W30,      -991*W30,     -1138*W30,       255*W30,
+     -1192*W30,      1722*W30,      1023*W30,      3700*W30,
+     -1388*W30,     -1551*W30,     -2549*W30,        27*W30,
+       282*W30,       673*W30,       113*W30,      1561*W30,
+        72*W30,       873*W30,        87*W30,      -395*W30,
+      -433*W30,       629*W30,      3440*W30,      -284*W30,
+      -592*W30,      -103*W30,       -46*W30,     -3844*W30,
+      1712*W30,       303*W30,      1555*W30,      -631*W30,
+     -1400*W30,      -961*W30,      -854*W30,      -276*W30,
+       407*W30,       833*W30,      -345*W30,     -1501*W30,
+       121*W30,     -1581*W30,       400*W30,       150*W30,
+      1224*W30,      -139*W30,      -563*W30,       879*W30,
+       933*W30,      2939*W30,       788*W30,       211*W30,
+       530*W30,      -192*W30,       706*W30,    -13347*W30,
+      1065*W30,         3*W30,       111*W30,      -208*W30,
+      -360*W30,      -532*W30,      -291*W30,       483*W30,
+       987*W30,       -33*W30,     -1373*W30,      -166*W30,
+     -1174*W30,     -3955*W30,      1601*W30,      -280*W30,
+      1405*W30,       600*W30,     -1659*W30,       -23*W30,
+       390*W30,       449*W30,       570*W30,    -13143*W30,
+        -9*W30,     -1646*W30,      1201*W30,       294*W30,
+      2181*W30,     -1173*W30,      1388*W30,     -4504*W30,
+       190*W30,     -2304*W30,       211*W30,       239*W30,
+        48*W30,      -817*W30,      1018*W30,      1828*W30,
+      -663*W30,      1408*W30,       408*W30,       -36*W30,
+      1295*W30,      -230*W30,      1341*W30,         9*W30,
+        40*W30,       705*W30,       186*W30,       376*W30,
+       557*W30,      5866*W30,       363*W30,     -1558*W30,
+       718*W30,       669*W30,      1369*W30,     -2972*W30,
+      -468*W30,      -121*W30,      -219*W30,       667*W30,
+     29954*W30,       366*W30,        48*W30,      -203*W30
 };
-#define S (1.0/8388608.0)  /* 2^-23 */
-static const float exp2_deltatable[256] = {
-    61*S,   107*S,  -301*S,   -91*S,    98*S,  -194*S,   -57*S,   223*S,
-  -162*S,   176*S,   241*S,    32*S,    24*S,    29*S,   138*S,   871*S,
-  -280*S,   -49*S,   204*S,   122*S,   238*S,   262*S,   108*S,  -195*S,
-   330*S,   103*S,   -23*S,  -215*S, -1269*S,  -610*S,    19*S,    13*S,
-    28*S,  -819*S,   298*S,    78*S,  -233*S,   -18*S,  1186*S,   172*S,
-   135*S,  -203*S,  -197*S,   -97*S,  -374*S,     8*S,   512*S,  -295*S,
-   240*S,   -15*S,   214*S,   -75*S,   -30*S,    88*S,    12*S,   806*S,
-   273*S,  -204*S,   445*S,   429*S,  -579*S,  -109*S,   207*S,    38*S,
-   695*S,  -161*S,    68*S,   825*S,  -178*S,   233*S,   187*S,  -358*S,
-    91*S,  1056*S,    53*S,   265*S,   257*S,  -150*S,  -118*S,   182*S,
-   281*S,   -49*S,   317*S,  -844*S,   -80*S,  -339*S,    10*S,  -269*S,
-   -16*S,  -208*S,  -226*S,    95*S,  -141*S,    14*S,    52*S,   -61*S,
-  -125*S,   -41*S,   454*S,  -176*S,   196*S,  -550*S,   -26*S,  -129*S,
-   -99*S,   250*S,   -25*S,  -274*S,  -154*S,   -32*S,   247*S,  -169*S,
-  -272*S,  -209*S,   -64*S,    53*S,    25*S,   171*S,   -25*S,  -406*S,
-   135*S,  -141*S,    84*S,   231*S,  -396*S,   414*S,    36*S,  -129*S,
-     0*S,    65*S,   133*S,   447*S,    70*S,    62*S,  -236*S,   639*S,
-  -903*S,   181*S,   -58*S,  -373*S,  -191*S,  -189*S,   244*S,    39*S,
-  -147*S,  -488*S,   196*S,   400*S,    -9*S,    15*S,   -70*S,  -201*S,
-   267*S,   133*S,   121*S,   270*S,  -240*S,   466*S,  -289*S,  -428*S,
-   -66*S,   352*S,  -880*S,    41*S,   -96*S,  -758*S,   130*S,    29*S,
-   310*S,   124*S,    81*S,  -135*S,   348*S,  -172*S,   -44*S,  -338*S,
-  -183*S,   148*S,  -206*S,    32*S,    -9*S,  -257*S,    61*S,  -196*S,
-   -69*S,  -501*S,  -193*S,   -60*S,    12*S,   296*S,    46*S,   311*S,
-   349*S,   383*S,    11*S,   -60*S,  -980*S,  -789*S,  -296*S,  -112*S,
-    49*S,  -289*S,  -128*S,    72*S,    65*S,  -643*S,   682*S,    -6*S,
-  -378*S,   124*S,  -103*S,  -506*S,   116*S,   190*S,   406*S,  -326*S,
-   -83*S,   255*S,   -83*S,   152*S,   -30*S,   185*S,   -80*S,   206*S,
-    56*S,   332*S,    50*S,  -266*S,   -58*S,    56*S,     1*S,   313*S,
-  -458*S,   135*S,   122*S,  -312*S,   206*S,   -89*S,  -141*S,  -325*S,
-   -83*S,   253*S,  -190*S,  -419*S,   738*S,    83*S,  -331*S,   328*S,
-  -233*S,   391*S,   159*S,   -62*S,   663*S,   261*S,   345*S,  -288*S
+
+static const float __exp2f_atable[256] /* __attribute__((mode(SF))) */ = {
+ 0.707106411447, /* 0x0.b504ecfff */
+ 0.709024071690, /* 0x0.b58299fff */
+ 0.710945606239, /* 0x0.b60088000 */
+ 0.712874472142, /* 0x0.b67ef1000 */
+ 0.714806139464, /* 0x0.b6fd88fff */
+ 0.716744661340, /* 0x0.b77c94000 */
+ 0.718687653549, /* 0x0.b7fbea000 */
+ 0.720636486992, /* 0x0.b87ba1fff */
+ 0.722590208040, /* 0x0.b8fbabfff */
+ 0.724549472323, /* 0x0.b97c12fff */
+ 0.726514220228, /* 0x0.b9fcd5fff */
+ 0.728483855735, /* 0x0.ba7deb000 */
+ 0.730457961549, /* 0x0.baff4afff */
+ 0.732438981522, /* 0x0.bb811efff */
+ 0.734425544748, /* 0x0.bc0350000 */
+ 0.736416816713, /* 0x0.bc85d0000 */
+ 0.738412797450, /* 0x0.bd089efff */
+ 0.740414917465, /* 0x0.bd8bd4fff */
+ 0.742422521111, /* 0x0.be0f66fff */
+ 0.744434773914, /* 0x0.be9346fff */
+ 0.746454179287, /* 0x0.bf179f000 */
+ 0.748477637755, /* 0x0.bf9c3afff */
+ 0.750506639473, /* 0x0.c02133fff */
+ 0.752541840064, /* 0x0.c0a694fff */
+ 0.754582285889, /* 0x0.c12c4e000 */
+ 0.756628334525, /* 0x0.c1b265000 */
+ 0.758678436269, /* 0x0.c238bffff */
+ 0.760736882681, /* 0x0.c2bfa6fff */
+ 0.762799203401, /* 0x0.c346cf000 */
+ 0.764867603790, /* 0x0.c3ce5d000 */
+ 0.766940355298, /* 0x0.c45633fff */
+ 0.769021093841, /* 0x0.c4de90fff */
+ 0.771104693409, /* 0x0.c5671dfff */
+ 0.773195922364, /* 0x0.c5f02afff */
+ 0.775292098512, /* 0x0.c6798afff */
+ 0.777394294745, /* 0x0.c70350000 */
+ 0.779501736166, /* 0x0.c78d6d000 */
+ 0.781615912910, /* 0x0.c817fafff */
+ 0.783734917628, /* 0x0.c8a2d9fff */
+ 0.785858273516, /* 0x0.c92e02000 */
+ 0.787990570071, /* 0x0.c9b9c0000 */
+ 0.790125787245, /* 0x0.ca45aefff */
+ 0.792268991467, /* 0x0.cad223fff */
+ 0.794417440881, /* 0x0.cb5ef0fff */
+ 0.796570718287, /* 0x0.cbec0efff */
+ 0.798730909811, /* 0x0.cc79a0fff */
+ 0.800892710672, /* 0x0.cd074dfff */
+ 0.803068041795, /* 0x0.cd95ddfff */
+ 0.805242776881, /* 0x0.ce2464000 */
+ 0.807428598393, /* 0x0.ceb3a3fff */
+ 0.809617877002, /* 0x0.cf431dfff */
+ 0.811812341211, /* 0x0.cfd2eefff */
+ 0.814013659956, /* 0x0.d06333000 */
+ 0.816220164311, /* 0x0.d0f3ce000 */
+ 0.818434238424, /* 0x0.d184e7fff */
+ 0.820652604094, /* 0x0.d21649fff */
+ 0.822877407074, /* 0x0.d2a818000 */
+ 0.825108587751, /* 0x0.d33a51000 */
+ 0.827342867839, /* 0x0.d3ccbdfff */
+ 0.829588949684, /* 0x0.d45ff1000 */
+ 0.831849217401, /* 0x0.d4f411fff */
+ 0.834093391880, /* 0x0.d58724fff */
+ 0.836355149750, /* 0x0.d61b5f000 */
+ 0.838620424257, /* 0x0.d6afd3fff */
+ 0.840896368027, /* 0x0.d744fc000 */
+ 0.843176305293, /* 0x0.d7da66fff */
+ 0.845462262643, /* 0x0.d87037000 */
+ 0.847754716864, /* 0x0.d90673fff */
+ 0.850052893157, /* 0x0.d99d10fff */
+ 0.852359056469, /* 0x0.da3433fff */
+ 0.854668736446, /* 0x0.dacb91fff */
+ 0.856986224651, /* 0x0.db6373000 */
+ 0.859309315673, /* 0x0.dbfbb1fff */
+ 0.861639738080, /* 0x0.dc946bfff */
+ 0.863975346095, /* 0x0.dd2d7d000 */
+ 0.866317391394, /* 0x0.ddc6f9fff */
+ 0.868666708472, /* 0x0.de60f1000 */
+ 0.871022939695, /* 0x0.defb5c000 */
+ 0.873383641229, /* 0x0.df9611fff */
+ 0.875751554968, /* 0x0.e03141000 */
+ 0.878126025200, /* 0x0.e0ccde000 */
+ 0.880506813521, /* 0x0.e168e4fff */
+ 0.882894217966, /* 0x0.e2055afff */
+ 0.885287821299, /* 0x0.e2a239000 */
+ 0.887686729423, /* 0x0.e33f6ffff */
+ 0.890096127973, /* 0x0.e3dd56fff */
+ 0.892507970338, /* 0x0.e47b67000 */
+ 0.894928157336, /* 0x0.e51a03000 */
+ 0.897355020043, /* 0x0.e5b90efff */
+ 0.899788379682, /* 0x0.e65888000 */
+ 0.902227103705, /* 0x0.e6f85afff */
+ 0.904673457151, /* 0x0.e798ae000 */
+ 0.907128036008, /* 0x0.e8398afff */
+ 0.909585535528, /* 0x0.e8da99000 */
+ 0.912051796915, /* 0x0.e97c3a000 */
+ 0.914524436003, /* 0x0.ea1e46000 */
+ 0.917003571999, /* 0x0.eac0bf000 */
+ 0.919490039339, /* 0x0.eb63b2fff */
+ 0.921983361257, /* 0x0.ec071a000 */
+ 0.924488604054, /* 0x0.ecab48fff */
+ 0.926989555360, /* 0x0.ed4f30000 */
+ 0.929502844812, /* 0x0.edf3e6000 */
+ 0.932021975503, /* 0x0.ee98fdfff */
+ 0.934553921208, /* 0x0.ef3eecfff */
+ 0.937083780759, /* 0x0.efe4b8fff */
+ 0.939624726786, /* 0x0.f08b3f000 */
+ 0.942198514924, /* 0x0.f133ebfff */
+ 0.944726586343, /* 0x0.f1d99a000 */
+ 0.947287976728, /* 0x0.f28176fff */
+ 0.949856162070, /* 0x0.f329c5fff */
+ 0.952431440345, /* 0x0.f3d28bfff */
+ 0.955013573175, /* 0x0.f47bc5000 */
+ 0.957603693021, /* 0x0.f52584000 */
+ 0.960199773321, /* 0x0.f5cfa7000 */
+ 0.962801992906, /* 0x0.f67a31000 */
+ 0.965413510788, /* 0x0.f72556fff */
+ 0.968030691152, /* 0x0.f7d0dc000 */
+ 0.970655620084, /* 0x0.f87ce2fff */
+ 0.973290979849, /* 0x0.f92998fff */
+ 0.975926160805, /* 0x0.f9d64bfff */
+ 0.978571653370, /* 0x0.fa83ac000 */
+ 0.981225252139, /* 0x0.fb3193fff */
+ 0.983885228626, /* 0x0.fbdfe6fff */
+ 0.986552715296, /* 0x0.fc8eb7fff */
+ 0.989228487027, /* 0x0.fd3e14000 */
+ 0.991909801964, /* 0x0.fdedcd000 */
+ 0.994601726545, /* 0x0.fe9e38000 */
+ 0.997297704209, /* 0x0.ff4ee6fff */
+ 1.000000000000, /* 0x1.000000000 */
+ 1.002710938457, /* 0x1.00b1aa000 */
+ 1.005429744692, /* 0x1.0163d7ffe */
+ 1.008155703526, /* 0x1.02167dffe */
+ 1.010888457284, /* 0x1.02c995fff */
+ 1.013629436498, /* 0x1.037d38000 */
+ 1.016377568250, /* 0x1.043152000 */
+ 1.019134163841, /* 0x1.04e5f9ffe */
+ 1.021896362316, /* 0x1.059b00000 */
+ 1.024668931945, /* 0x1.0650b3ffe */
+ 1.027446627635, /* 0x1.0706be001 */
+ 1.030234098408, /* 0x1.07bd6bffe */
+ 1.033023953416, /* 0x1.087441ffe */
+ 1.035824656494, /* 0x1.092bce000 */
+ 1.038632392900, /* 0x1.09e3d0001 */
+ 1.041450142840, /* 0x1.0a9c79ffe */
+ 1.044273972530, /* 0x1.0b558a001 */
+ 1.047105550795, /* 0x1.0c0f1c001 */
+ 1.049944162390, /* 0x1.0cc924001 */
+ 1.052791833895, /* 0x1.0d83c4001 */
+ 1.055645227426, /* 0x1.0e3ec3fff */
+ 1.058507919326, /* 0x1.0efa60001 */
+ 1.061377286898, /* 0x1.0fb66bfff */
+ 1.064254641510, /* 0x1.1072fdffe */
+ 1.067140102389, /* 0x1.113018000 */
+ 1.070034146304, /* 0x1.11edc1fff */
+ 1.072937250162, /* 0x1.12ac04001 */
+ 1.075843691823, /* 0x1.136a7dfff */
+ 1.078760385496, /* 0x1.1429a3ffe */
+ 1.081685543070, /* 0x1.14e958000 */
+ 1.084618330005, /* 0x1.15a98c000 */
+ 1.087556362176, /* 0x1.166a18001 */
+ 1.090508937863, /* 0x1.172b98001 */
+ 1.093464612954, /* 0x1.17ed4bfff */
+ 1.096430182434, /* 0x1.18afa5ffe */
+ 1.099401354802, /* 0x1.19725e000 */
+ 1.102381587017, /* 0x1.1a35adfff */
+ 1.105370759965, /* 0x1.1af994000 */
+ 1.108367800686, /* 0x1.1bbdfdffe */
+ 1.111373305331, /* 0x1.1c82f6000 */
+ 1.114387035385, /* 0x1.1d4878001 */
+ 1.117408752440, /* 0x1.1e0e7ffff */
+ 1.120437502874, /* 0x1.1ed4fe000 */
+ 1.123474478729, /* 0x1.1f9c06000 */
+ 1.126521706601, /* 0x1.2063ba001 */
+ 1.129574775716, /* 0x1.212bd0001 */
+ 1.132638812065, /* 0x1.21f49e000 */
+ 1.135709524130, /* 0x1.22bddbffe */
+ 1.138789534565, /* 0x1.2387b5fff */
+ 1.141876101508, /* 0x1.2451fe000 */
+ 1.144971728301, /* 0x1.251cddffe */
+ 1.148077130296, /* 0x1.25e861ffe */
+ 1.151189923305, /* 0x1.26b462001 */
+ 1.154312610610, /* 0x1.278107ffe */
+ 1.157440662410, /* 0x1.284e08001 */
+ 1.160578370109, /* 0x1.291baa001 */
+ 1.163725256932, /* 0x1.29e9e6000 */
+ 1.166879892324, /* 0x1.2ab8a3ffe */
+ 1.170044302935, /* 0x1.2b8805fff */
+ 1.173205971694, /* 0x1.2c5739ffe */
+ 1.176397800428, /* 0x1.2d2867ffe */
+ 1.179586529747, /* 0x1.2df962001 */
+ 1.182784795737, /* 0x1.2ecafbffe */
+ 1.185991406414, /* 0x1.2f9d21ffe */
+ 1.189206838636, /* 0x1.306fdc001 */
+ 1.192430973067, /* 0x1.314328000 */
+ 1.195664167430, /* 0x1.32170c001 */
+ 1.198906540890, /* 0x1.32eb8a001 */
+ 1.202157497408, /* 0x1.33c098000 */
+ 1.205416083326, /* 0x1.349625fff */
+ 1.208683252332, /* 0x1.356c43fff */
+ 1.211961269402, /* 0x1.364318001 */
+ 1.215246438983, /* 0x1.371a64000 */
+ 1.218539118740, /* 0x1.37f22dffe */
+ 1.221847295770, /* 0x1.38cafc000 */
+ 1.225158572187, /* 0x1.39a3fdfff */
+ 1.228481650325, /* 0x1.3a7dc5ffe */
+ 1.231811761846, /* 0x1.3b5803fff */
+ 1.235149741144, /* 0x1.3c32c5ffe */
+ 1.238499879811, /* 0x1.3d0e53ffe */
+ 1.241858124726, /* 0x1.3dea69fff */
+ 1.245225191102, /* 0x1.3ec713fff */
+ 1.248601436624, /* 0x1.3fa458000 */
+ 1.251975655584, /* 0x1.40817a001 */
+ 1.255380749731, /* 0x1.4160a2001 */
+ 1.258783102010, /* 0x1.423f9bffe */
+ 1.262198328973, /* 0x1.431f6e000 */
+ 1.265619754780, /* 0x1.43ffa7fff */
+ 1.269052743928, /* 0x1.44e0a4001 */
+ 1.272490739830, /* 0x1.45c1f4000 */
+ 1.275942921659, /* 0x1.46a432001 */
+ 1.279397487615, /* 0x1.478697ffe */
+ 1.282870173427, /* 0x1.486a2dffe */
+ 1.286346316319, /* 0x1.494dfdffe */
+ 1.289836049094, /* 0x1.4a32b2001 */
+ 1.293333172770, /* 0x1.4b17e1ffe */
+ 1.296839594835, /* 0x1.4bfdadfff */
+ 1.300354957560, /* 0x1.4ce40fffe */
+ 1.303882122055, /* 0x1.4dcb38001 */
+ 1.307417988757, /* 0x1.4eb2f1ffe */
+ 1.310960650439, /* 0x1.4f9b1dfff */
+ 1.314516782746, /* 0x1.50842bfff */
+ 1.318079948424, /* 0x1.516daffff */
+ 1.321653246888, /* 0x1.5257de000 */
+ 1.325237751030, /* 0x1.5342c8001 */
+ 1.328829526907, /* 0x1.542e2c000 */
+ 1.332433700535, /* 0x1.551a5fffe */
+ 1.336045145966, /* 0x1.56070dffe */
+ 1.339667558645, /* 0x1.56f473ffe */
+ 1.343300342533, /* 0x1.57e287ffe */
+ 1.346941947961, /* 0x1.58d130001 */
+ 1.350594043714, /* 0x1.59c087ffe */
+ 1.354256033883, /* 0x1.5ab085fff */
+ 1.357932448365, /* 0x1.5ba175ffe */
+ 1.361609339707, /* 0x1.5c926dfff */
+ 1.365299344044, /* 0x1.5d8441ffe */
+ 1.369003057507, /* 0x1.5e76fc001 */
+ 1.372714757920, /* 0x1.5f6a3c000 */
+ 1.376437187179, /* 0x1.605e2fffe */
+ 1.380165219333, /* 0x1.615282001 */
+ 1.383909463864, /* 0x1.6247e3ffe */
+ 1.387661933907, /* 0x1.633dd0000 */
+ 1.391424179060, /* 0x1.64345fffe */
+ 1.395197510706, /* 0x1.652ba9fff */
+ 1.399006724329, /* 0x1.66254dffe */
+ 1.402773022651, /* 0x1.671c22000 */
+ 1.406576037403, /* 0x1.68155dfff */
+ 1.410389423392, /* 0x1.690f48001 */
 };
-/* Maximum magnitude in above table: 1269 */
-#undef S
-#define EXP2_TSIZE 8
-#define EXP2_TTOL 9
-#define EXP2_FSIZE 23
-#define EXP2_FNAME float