about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/s_log1p.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754/s_log1p.c')
-rw-r--r--sysdeps/libm-ieee754/s_log1p.c191
1 files changed, 0 insertions, 191 deletions
diff --git a/sysdeps/libm-ieee754/s_log1p.c b/sysdeps/libm-ieee754/s_log1p.c
deleted file mode 100644
index 0a9801a931..0000000000
--- a/sysdeps/libm-ieee754/s_log1p.c
+++ /dev/null
@@ -1,191 +0,0 @@
-/* @(#)s_log1p.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
-   for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
-#endif
-
-/* double log1p(double x)
- *
- * Method :
- *   1. Argument Reduction: find k and f such that
- *			1+x = 2^k * (1+f),
- *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
- *
- *      Note. If k=0, then f=x is exact. However, if k!=0, then f
- *	may not be representable exactly. In that case, a correction
- *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
- *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
- *	and add back the correction term c/u.
- *	(Note: when x > 2**53, one can simply return log(x))
- *
- *   2. Approximation of log1p(f).
- *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *	     	 = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate
- * 	a polynomial of degree 14 to approximate R The maximum error
- *	of this polynomial approximation is bounded by 2**-58.45. In
- *	other words,
- *		        2      4      6      8      10      12      14
- *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
- *  	(the values of Lp1 to Lp7 are listed in the program)
- *	and
- *	    |      2          14          |     -58.45
- *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
- *	    |                             |
- *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *	In order to guarantee error in log below 1ulp, we compute log
- *	by
- *		log1p(f) = f - (hfsq - s*(hfsq+R)).
- *
- *	3. Finally, log1p(x) = k*ln2 + log1p(f).
- *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *	   Here ln2 is split into two floating point number:
- *			ln2_hi + ln2_lo,
- *	   where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
- *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
- *	log1p(NaN) is that NaN with no signal.
- *
- * Accuracy:
- *	according to an error analysis, the error is always less than
- *	1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- *
- * Note: Assuming log() return accurate answer, the following
- * 	 algorithm can be used to compute log1p(x) to within a few ULP:
- *
- *		u = 1+x;
- *		if(u==1.0) return x ; else
- *			   return log(u)*(x/(u-1.0));
- *
- *	 See HP-15C Advanced Functions Handbook, p.193.
- */
-
-#include "math.h"
-#include "math_private.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
-ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
-two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
-Lp[] = {0.0, 6.666666666666735130e-01,  /* 3FE55555 55555593 */
- 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
- 2.857142874366239149e-01,  /* 3FD24924 94229359 */
- 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
- 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
- 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
- 1.479819860511658591e-01};  /* 3FC2F112 DF3E5244 */
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
-	double __log1p(double x)
-#else
-	double __log1p(x)
-	double x;
-#endif
-{
-	double hfsq,f,c,s,z,R,u,z2,z4,z6,R1,R2,R3,R4;
-	int32_t k,hx,hu,ax;
-
-	GET_HIGH_WORD(hx,x);
-	ax = hx&0x7fffffff;
-
-	k = 1;
-	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
-	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
-		if(x==-1.0) return -two54/(x-x);/* log1p(-1)=+inf */
-		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
-	    }
-	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
-		if(two54+x>zero			/* raise inexact */
-	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
-		    return x;
-		else
-		    return x - x*x*0.5;
-	    }
-	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
-		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
-	}
-	if (hx >= 0x7ff00000) return x+x;
-	if(k!=0) {
-	    if(hx<0x43400000) {
-		u  = 1.0+x;
-		GET_HIGH_WORD(hu,u);
-	        k  = (hu>>20)-1023;
-	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
-		c /= u;
-	    } else {
-		u  = x;
-		GET_HIGH_WORD(hu,u);
-	        k  = (hu>>20)-1023;
-		c  = 0;
-	    }
-	    hu &= 0x000fffff;
-	    if(hu<0x6a09e) {
-	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
-	    } else {
-	        k += 1;
-		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
-	        hu = (0x00100000-hu)>>2;
-	    }
-	    f = u-1.0;
-	}
-	hfsq=0.5*f*f;
-	if(hu==0) {	/* |f| < 2**-20 */
-	    if(f==zero) {
-	      if(k==0) return zero;
-			else {c += k*ln2_lo; return k*ln2_hi+c;}
-	    }
-	    R = hfsq*(1.0-0.66666666666666666*f);
-	    if(k==0) return f-R; else
-	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
-	}
- 	s = f/(2.0+f);
-	z = s*s;
-#ifdef DO_NOT_USE_THIS
-	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
-#else
-	R1 = z*Lp[1]; z2=z*z;
-	R2 = Lp[2]+z*Lp[3]; z4=z2*z2;
-	R3 = Lp[4]+z*Lp[5]; z6=z4*z2;
-	R4 = Lp[6]+z*Lp[7];
-	R = R1 + z2*R2 + z4*R3 + z6*R4;
-#endif
-	if(k==0) return f-(hfsq-s*(hfsq+R)); else
-		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
-}
-weak_alias (__log1p, log1p)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__log1p, __log1pl)
-weak_alias (__log1p, log1pl)
-#endif