about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/s_expm1.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754/s_expm1.c')
-rw-r--r--sysdeps/libm-ieee754/s_expm1.c243
1 files changed, 0 insertions, 243 deletions
diff --git a/sysdeps/libm-ieee754/s_expm1.c b/sysdeps/libm-ieee754/s_expm1.c
deleted file mode 100644
index bfd15b2e31..0000000000
--- a/sysdeps/libm-ieee754/s_expm1.c
+++ /dev/null
@@ -1,243 +0,0 @@
-/* @(#)s_expm1.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
-   for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
-#endif
-
-/* expm1(x)
- * Returns exp(x)-1, the exponential of x minus 1.
- *
- * Method
- *   1. Argument reduction:
- *	Given x, find r and integer k such that
- *
- *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
- *
- *      Here a correction term c will be computed to compensate
- *	the error in r when rounded to a floating-point number.
- *
- *   2. Approximating expm1(r) by a special rational function on
- *	the interval [0,0.34658]:
- *	Since
- *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
- *	we define R1(r*r) by
- *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
- *	That is,
- *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
- *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
- *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
- *      We use a special Reme algorithm on [0,0.347] to generate
- * 	a polynomial of degree 5 in r*r to approximate R1. The
- *	maximum error of this polynomial approximation is bounded
- *	by 2**-61. In other words,
- *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
- *	where 	Q1  =  -1.6666666666666567384E-2,
- * 		Q2  =   3.9682539681370365873E-4,
- * 		Q3  =  -9.9206344733435987357E-6,
- * 		Q4  =   2.5051361420808517002E-7,
- * 		Q5  =  -6.2843505682382617102E-9;
- *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
- *	with error bounded by
- *	    |                  5           |     -61
- *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
- *	    |                              |
- *
- *	expm1(r) = exp(r)-1 is then computed by the following
- * 	specific way which minimize the accumulation rounding error:
- *			       2     3
- *			      r     r    [ 3 - (R1 + R1*r/2)  ]
- *	      expm1(r) = r + --- + --- * [--------------------]
- *		              2     2    [ 6 - r*(3 - R1*r/2) ]
- *
- *	To compensate the error in the argument reduction, we use
- *		expm1(r+c) = expm1(r) + c + expm1(r)*c
- *			   ~ expm1(r) + c + r*c
- *	Thus c+r*c will be added in as the correction terms for
- *	expm1(r+c). Now rearrange the term to avoid optimization
- * 	screw up:
- *		        (      2                                    2 )
- *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
- *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
- *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
- *                      (                                             )
- *
- *		   = r - E
- *   3. Scale back to obtain expm1(x):
- *	From step 1, we have
- *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
- *		    = or     2^k*[expm1(r) + (1-2^-k)]
- *   4. Implementation notes:
- *	(A). To save one multiplication, we scale the coefficient Qi
- *	     to Qi*2^i, and replace z by (x^2)/2.
- *	(B). To achieve maximum accuracy, we compute expm1(x) by
- *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
- *	  (ii)  if k=0, return r-E
- *	  (iii) if k=-1, return 0.5*(r-E)-0.5
- *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
- *	       	       else	     return  1.0+2.0*(r-E);
- *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
- *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
- *	  (vii) return 2^k(1-((E+2^-k)-r))
- *
- * Special cases:
- *	expm1(INF) is INF, expm1(NaN) is NaN;
- *	expm1(-INF) is -1, and
- *	for finite argument, only expm1(0)=0 is exact.
- *
- * Accuracy:
- *	according to an error analysis, the error is always less than
- *	1 ulp (unit in the last place).
- *
- * Misc. info.
- *	For IEEE double
- *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "math.h"
-#include "math_private.h"
-#define one Q[0]
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge		= 1.0e+300,
-tiny		= 1.0e-300,
-o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
-ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
-ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
-invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
-	/* scaled coefficients related to expm1 */
-Q[]  =  {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
-   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
-  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
-   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
-  -2.01099218183624371326e-07}; /* BE8AFDB7 6E09C32D */
-
-#ifdef __STDC__
-	double __expm1(double x)
-#else
-	double __expm1(x)
-	double x;
-#endif
-{
-	double y,hi,lo,c,t,e,hxs,hfx,r1,h2,h4,R1,R2,R3;
-	int32_t k,xsb;
-	u_int32_t hx;
-
-	GET_HIGH_WORD(hx,x);
-	xsb = hx&0x80000000;		/* sign bit of x */
-	if(xsb==0) y=x; else y= -x;	/* y = |x| */
-	hx &= 0x7fffffff;		/* high word of |x| */
-
-    /* filter out huge and non-finite argument */
-	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
-	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
-                if(hx>=0x7ff00000) {
-		    u_int32_t low;
-		    GET_LOW_WORD(low,x);
-		    if(((hx&0xfffff)|low)!=0)
-		         return x+x; 	 /* NaN */
-		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
-	        }
-	        if(x > o_threshold) return huge*huge; /* overflow */
-	    }
-	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
-		if(x+tiny<0.0)		/* raise inexact */
-		return tiny-one;	/* return -1 */
-	    }
-	}
-
-    /* argument reduction */
-	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
-	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
-		if(xsb==0)
-		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
-		else
-		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
-	    } else {
-		k  = invln2*x+((xsb==0)?0.5:-0.5);
-		t  = k;
-		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
-		lo = t*ln2_lo;
-	    }
-	    x  = hi - lo;
-	    c  = (hi-x)-lo;
-	}
-	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
-	    t = huge+x;	/* return x with inexact flags when x!=0 */
-	    return x - (t-(huge+x));
-	}
-	else k = 0;
-
-    /* x is now in primary range */
-	hfx = 0.5*x;
-	hxs = x*hfx;
-#ifdef DO_NOT_USE_THIS
-	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
-#else
-	R1 = one+hxs*Q[1]; h2 = hxs*hxs;
-	R2 = Q[2]+hxs*Q[3]; h4 = h2*h2;
-	R3 = Q[4]+hxs*Q[5];
-	r1 = R1 + h2*R2 + h4*R3;
-#endif
-	t  = 3.0-r1*hfx;
-	e  = hxs*((r1-t)/(6.0 - x*t));
-	if(k==0) return x - (x*e-hxs);		/* c is 0 */
-	else {
-	    e  = (x*(e-c)-c);
-	    e -= hxs;
-	    if(k== -1) return 0.5*(x-e)-0.5;
-	    if(k==1) {
-	       	if(x < -0.25) return -2.0*(e-(x+0.5));
-	       	else 	      return  one+2.0*(x-e);
-	    }
-	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
-	        u_int32_t high;
-	        y = one-(e-x);
-		GET_HIGH_WORD(high,y);
-		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
-	        return y-one;
-	    }
-	    t = one;
-	    if(k<20) {
-	        u_int32_t high;
-	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
-	       	y = t-(e-x);
-		GET_HIGH_WORD(high,y);
-		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
-	   } else {
-	        u_int32_t high;
-		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
-	       	y = x-(e+t);
-	       	y += one;
-		GET_HIGH_WORD(high,y);
-		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
-	    }
-	}
-	return y;
-}
-weak_alias (__expm1, expm1)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__expm1, __expm1l)
-weak_alias (__expm1, expm1l)
-#endif