about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/k_tan.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754/k_tan.c')
-rw-r--r--sysdeps/libm-ieee754/k_tan.c145
1 files changed, 0 insertions, 145 deletions
diff --git a/sysdeps/libm-ieee754/k_tan.c b/sysdeps/libm-ieee754/k_tan.c
deleted file mode 100644
index 55dafb8ebc..0000000000
--- a/sysdeps/libm-ieee754/k_tan.c
+++ /dev/null
@@ -1,145 +0,0 @@
-/* @(#)k_tan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
-   for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";
-#endif
-
-/* __kernel_tan( x, y, k )
- * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input k indicates whether tan (if k=1) or
- * -1/tan (if k= -1) is returned.
- *
- * Algorithm
- *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
- *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
- *	3. tan(x) is approximated by a odd polynomial of degree 27 on
- *	   [0,0.67434]
- *		  	         3             27
- *	   	tan(x) ~ x + T1*x + ... + T13*x
- *	   where
- *
- * 	        |tan(x)         2     4            26   |     -59.2
- * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
- * 	        |  x 					|
- *
- *	   Note: tan(x+y) = tan(x) + tan'(x)*y
- *		          ~ tan(x) + (1+x*x)*y
- *	   Therefore, for better accuracy in computing tan(x+y), let
- *		     3      2      2       2       2
- *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
- *	   then
- *		 		    3    2
- *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
- *
- *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
- *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
- *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
- */
-
-#include "math.h"
-#include "math_private.h"
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
-pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
-T[] =  {
-  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
-  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
-  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
-  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
-  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
-  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
-  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
-  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
-  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
-  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
-  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
- -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
-  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
-};
-
-#ifdef __STDC__
-	double __kernel_tan(double x, double y, int iy)
-#else
-	double __kernel_tan(x, y, iy)
-	double x,y; int iy;
-#endif
-{
-	double z,r,v,w,s,r1,r2,r3,v1,v2,v3,w2,w4;
-	int32_t ix,hx;
-	GET_HIGH_WORD(hx,x);
-	ix = hx&0x7fffffff;	/* high word of |x| */
-	if(ix<0x3e300000)			/* x < 2**-28 */
-	    {if((int)x==0) {			/* generate inexact */
-	        u_int32_t low;
-		GET_LOW_WORD(low,x);
-		if(((ix|low)|(iy+1))==0) return one/fabs(x);
-		else return (iy==1)? x: -one/x;
-	    }
-	    }
-	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
-	    if(hx<0) {x = -x; y = -y;}
-	    z = pio4-x;
-	    w = pio4lo-y;
-	    x = z+w; y = 0.0;
-	}
-	z	=  x*x;
-	w 	=  z*z;
-    /* Break x^5*(T[1]+x^2*T[2]+...) into
-     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
-     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
-     */
-#ifdef DO_NOT_USE_THIS
-	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
-	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
-#else
-	v1 = T[10]+w*T[12]; w2=w*w;
-	v2 = T[6]+w*T[8]; w4=w2*w2;
-	v3 = T[2]+w*T[4]; v1=z*v1;
-	r1 = T[9]+w*T[11]; v2=z*v2;
-	r2 = T[5]+w*T[7]; v3=z*v3;
-	r3 = T[1]+w*T[3];
-	v  = v3 + w2*v2 + w4*v1;
-	r = r3 + w2*r2 + w4*r1;
-#endif
-	s = z*x;
-	r = y + z*(s*(r+v)+y);
-	r += T[0]*s;
-	w = x+r;
-	if(ix>=0x3FE59428) {
-	    v = (double)iy;
-	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
-	}
-	if(iy==1) return w;
-	else {		/* if allow error up to 2 ulp,
-			   simply return -1.0/(x+r) here */
-     /*  compute -1.0/(x+r) accurately */
-	    double a,t;
-	    z  = w;
-	    SET_LOW_WORD(z,0);
-	    v  = r-(z - x); 	/* z+v = r+x */
-	    t = a  = -1.0/w;	/* a = -1.0/w */
-	    SET_LOW_WORD(t,0);
-	    s  = 1.0+t*z;
-	    return t+a*(s+t*v);
-	}
-}