about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/k_sin.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754/k_sin.c')
-rw-r--r--sysdeps/libm-ieee754/k_sin.c91
1 files changed, 0 insertions, 91 deletions
diff --git a/sysdeps/libm-ieee754/k_sin.c b/sysdeps/libm-ieee754/k_sin.c
deleted file mode 100644
index 49c59228e0..0000000000
--- a/sysdeps/libm-ieee754/k_sin.c
+++ /dev/null
@@ -1,91 +0,0 @@
-/* @(#)k_sin.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
-   for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
-#endif
-
-/* __kernel_sin( x, y, iy)
- * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
- *
- * Algorithm
- *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
- *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
- *	3. sin(x) is approximated by a polynomial of degree 13 on
- *	   [0,pi/4]
- *		  	         3            13
- *	   	sin(x) ~ x + S1*x + ... + S6*x
- *	   where
- *
- * 	|sin(x)         2     4     6     8     10     12  |     -58
- * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
- * 	|  x 					           |
- *
- *	4. sin(x+y) = sin(x) + sin'(x')*y
- *		    ~ sin(x) + (1-x*x/2)*y
- *	   For better accuracy, let
- *		     3      2      2      2      2
- *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
- *	   then                   3    2
- *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
- */
-
-#include "math.h"
-#include "math_private.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-S[] = {
-  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
- -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
-  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
- -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
-  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
- -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
-  1.58969099521155010221e-10}; /* 0x3DE5D93A, 0x5ACFD57C */
-
-#ifdef __STDC__
-	double __kernel_sin(double x, double y, int iy)
-#else
-	double __kernel_sin(x, y, iy)
-	double x,y; int iy;		/* iy=0 if y is zero */
-#endif
-{
-	double z,r,v,z1,r1,r2;
-	int32_t ix;
-	GET_HIGH_WORD(ix,x);
-	ix &= 0x7fffffff;			/* high word of x */
-	if(ix<0x3e400000)			/* |x| < 2**-27 */
-	   {if((int)x==0) return x;}		/* generate inexact */
-	z	=  x*x;
-	v	=  z*x;
-#ifdef DO_NOT_USE_THIS
-	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
-	if(iy==0) return x+v*(S1+z*r);
-	else      return x-((z*(half*y-v*r)-y)-v*S1);
-#else
- 	r1	=  S[5]+z*S[6]; z1 = z*z*z;
-	r2	=  S[3]+z*S[4];
-	r	=  S[2] + z*r2 + z1*r1;
-	if(iy==0) return x+v*(S[1]+z*r);
- 	else      return x-((z*(S[0]*y-v*r)-y)-v*S[1]);
-#endif
-}