about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/e_log.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-ieee754/e_log.c')
-rw-r--r--sysdeps/libm-ieee754/e_log.c40
1 files changed, 20 insertions, 20 deletions
diff --git a/sysdeps/libm-ieee754/e_log.c b/sysdeps/libm-ieee754/e_log.c
index c27e0a9d64..f584694686 100644
--- a/sysdeps/libm-ieee754/e_log.c
+++ b/sysdeps/libm-ieee754/e_log.c
@@ -5,7 +5,7 @@
  *
  * Developed at SunPro, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -15,19 +15,19 @@ static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
 #endif
 
 /* __ieee754_log(x)
- * Return the logrithm of x
+ * Return the logarithm of x
  *
- * Method :                  
- *   1. Argument Reduction: find k and f such that 
- *			x = 2^k * (1+f), 
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *			x = 2^k * (1+f),
  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
  *
  *   2. Approximation of log(1+f).
  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  *	     	 = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate 
- * 	a polynomial of degree 14 to approximate R The maximum error 
+ *      We use a special Reme algorithm on [0,0.1716] to generate
+ * 	a polynomial of degree 14 to approximate R The maximum error
  *	of this polynomial approximation is bounded by 2**-58.45. In
  *	other words,
  *		        2      4      6      8      10      12      14
@@ -35,22 +35,22 @@ static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
  *  	(the values of Lg1 to Lg7 are listed in the program)
  *	and
  *	    |      2          14          |     -58.45
- *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
+ *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
  *	    |                             |
  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  *	In order to guarantee error in log below 1ulp, we compute log
  *	by
  *		log(1+f) = f - s*(f - R)	(if f is not too large)
  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
- *	
- *	3. Finally,  log(x) = k*ln2 + log(1+f).  
+ *
+ *	3. Finally,  log(x) = k*ln2 + log(1+f).
  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *	   Here ln2 is split into two floating point number: 
+ *	   Here ln2 is split into two floating point number:
  *			ln2_hi + ln2_lo,
  *	   where n*ln2_hi is always exact for |n| < 2000.
  *
  * Special cases:
- *	log(x) is NaN with signal if x < 0 (including -INF) ; 
+ *	log(x) is NaN with signal if x < 0 (including -INF) ;
  *	log(+INF) is +INF; log(0) is -INF with signal;
  *	log(NaN) is that NaN with no signal.
  *
@@ -59,9 +59,9 @@ static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
  *	1 ulp (unit in the last place).
  *
  * Constants:
- * The hexadecimal values are the intended ones for the following 
- * constants. The decimal values may be used, provided that the 
- * compiler will convert from decimal to binary accurately enough 
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
  * to produce the hexadecimal values shown.
  */
 
@@ -105,12 +105,12 @@ static double zero   =  0.0;
 
 	k=0;
 	if (hx < 0x00100000) {			/* x < 2**-1022  */
-	    if (((hx&0x7fffffff)|lx)==0) 
+	    if (((hx&0x7fffffff)|lx)==0)
 		return -two54/zero;		/* log(+-0)=-inf */
 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
 	    k -= 54; x *= two54; /* subnormal number, scale up x */
 	    GET_HIGH_WORD(hx,x);
-	} 
+	}
 	if (hx >= 0x7ff00000) return x+x;
 	k += (hx>>20)-1023;
 	hx &= 0x000fffff;
@@ -125,14 +125,14 @@ static double zero   =  0.0;
 	    if(k==0) return f-R; else {dk=(double)k;
 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
 	}
- 	s = f/(2.0+f); 
+ 	s = f/(2.0+f);
 	dk = (double)k;
 	z = s*s;
 	i = hx-0x6147a;
 	w = z*z;
 	j = 0x6b851-hx;
-	t1= w*(Lg2+w*(Lg4+w*Lg6)); 
-	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
 	i |= j;
 	R = t2+t1;
 	if(i>0) {