diff options
Diffstat (limited to 'sysdeps/libm-ieee754/e_hypotl.c')
-rw-r--r-- | sysdeps/libm-ieee754/e_hypotl.c | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/sysdeps/libm-ieee754/e_hypotl.c b/sysdeps/libm-ieee754/e_hypotl.c new file mode 100644 index 0000000000..1a40c556dc --- /dev/null +++ b/sysdeps/libm-ieee754/e_hypotl.c @@ -0,0 +1,133 @@ +/* e_hypotl.c -- long double version of e_hypot.c. + * Conversion to long double by Ulrich Drepper, + * Cygnus Support, drepper@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: $"; +#endif + +/* __ieee754_hypotl(x,y) + * + * Method : + * If (assume round-to-nearest) z=x*x+y*y + * has error less than sqrt(2)/2 ulp, than + * sqrt(z) has error less than 1 ulp (exercise). + * + * So, compute sqrt(x*x+y*y) with some care as + * follows to get the error below 1 ulp: + * + * Assume x>y>0; + * (if possible, set rounding to round-to-nearest) + * 1. if x > 2y use + * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y + * where x1 = x with lower 32 bits cleared, x2 = x-x1; else + * 2. if x <= 2y use + * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) + * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, + * y1= y with lower 32 bits chopped, y2 = y-y1. + * + * NOTE: scaling may be necessary if some argument is too + * large or too tiny + * + * Special cases: + * hypot(x,y) is INF if x or y is +INF or -INF; else + * hypot(x,y) is NAN if x or y is NAN. + * + * Accuracy: + * hypot(x,y) returns sqrt(x^2+y^2) with error less + * than 1 ulps (units in the last place) + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ + long double __ieee754_hypotl(long double x, long double y) +#else + long double __ieee754_hypotl(x,y) + long double x, y; +#endif +{ + long double a,b,t1,t2,y1,y2,w; + u_int32_t j,k,ea,eb; + + GET_LDOUBLE_EXP(ea,x); + ea &= 0x7fff; + GET_LDOUBLE_EXP(eb,y); + eb &= 0x7fff; + if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;} + SET_LDOUBLE_EXP(a,ea); /* a <- |a| */ + SET_LDOUBLE_EXP(b,eb); /* b <- |b| */ + if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */ + k=0; + if(ea > 0x5f3f) { /* a>2**8000 */ + if(ea == 0x7fff) { /* Inf or NaN */ + u_int32_t exp,high,low; + w = a+b; /* for sNaN */ + GET_LDOUBLE_WORDS(exp,high,low,a); + if(((high&0x7fffffff)|low)==0) w = a; + GET_LDOUBLE_WORDS(exp,high,low,b); + if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b; + return w; + } + /* scale a and b by 2**-9600 */ + ea -= 0x2580; eb -= 0x2580; k += 9600; + SET_LDOUBLE_EXP(a,ea); + SET_LDOUBLE_EXP(b,eb); + } + if(eb < 0x20bf) { /* b < 2**-8000 */ + if(eb == 0) { /* subnormal b or 0 */ + u_int32_t exp,high,low; + GET_LDOUBLE_WORDS(exp,high,low,b); + if((high|low)==0) return a; + SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0); /* t1=2^16382 */ + b *= t1; + a *= t1; + k -= 16382; + } else { /* scale a and b by 2^9600 */ + ea += 0x2580; /* a *= 2^9600 */ + eb += 0x2580; /* b *= 2^9600 */ + k -= 9600; + SET_LDOUBLE_EXP(a,ea); + SET_LDOUBLE_EXP(b,eb); + } + } + /* medium size a and b */ + w = a-b; + if (w>b) { + u_int32_t high; + GET_LDOUBLE_MSW(high,a); + SET_LDOUBLE_WORDS(t1,ea,high,0); + t2 = a-t1; + w = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + u_int32_t high; + GET_LDOUBLE_MSW(high,b); + a = a+a; + SET_LDOUBLE_WORDS(y1,eb,high,0); + y2 = b - y1; + GET_LDOUBLE_MSW(high,a); + SET_LDOUBLE_WORDS(t1,ea+1,high,0); + t2 = a - t1; + w = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + u_int32_t exp; + t1 = 1.0; + GET_LDOUBLE_EXP(exp,t1); + SET_LDOUBLE_EXP(t1,exp+k); + return t1*w; + } else return w; +} |