diff options
Diffstat (limited to 'sysdeps/libm-ieee754/e_expf.c')
-rw-r--r-- | sysdeps/libm-ieee754/e_expf.c | 241 |
1 files changed, 147 insertions, 94 deletions
diff --git a/sysdeps/libm-ieee754/e_expf.c b/sysdeps/libm-ieee754/e_expf.c index fbf2691bf9..08103aa271 100644 --- a/sysdeps/libm-ieee754/e_expf.c +++ b/sysdeps/libm-ieee754/e_expf.c @@ -1,104 +1,157 @@ -/* e_expf.c -- float version of e_exp.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: e_expf.c,v 1.6 1996/04/08 15:43:43 phil Exp $"; -#endif +/* Single-precision floating point e^x. + Copyright (C) 1997, 1998 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Geoffrey Keating <geoffk@ozemail.com.au> -#include "math.h" -#include "math_private.h" + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. -static const float huge = 1.0e+30; + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0, -halF[2] = {0.5,-0.5,}, -twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */ -o_threshold= 8.8721679688e+01, /* 0x42b17180 */ -u_threshold= -1.0397208405e+02, /* 0xc2cff1b5 */ -ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */ - -6.9313812256e-01,}, /* 0xbf317180 */ -ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */ - -9.0580006145e-06,}, /* 0xb717f7d1 */ -invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */ -P1 = 1.6666667163e-01, /* 0x3e2aaaab */ -P2 = -2.7777778450e-03, /* 0xbb360b61 */ -P3 = 6.6137559770e-05, /* 0x388ab355 */ -P4 = -1.6533901999e-06, /* 0xb5ddea0e */ -P5 = 4.1381369442e-08; /* 0x3331bb4c */ - -#ifdef __STDC__ - float __ieee754_expf(float x) /* default IEEE double exp */ -#else - float __ieee754_expf(x) /* default IEEE double exp */ - float x; + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* How this works: + + The input value, x, is written as + + x = n * ln(2) + t/512 + delta[t] + x; + + where: + - n is an integer, 127 >= n >= -150; + - t is an integer, 177 >= t >= -177 + - delta is based on a table entry, delta[t] < 2^-28 + - x is whatever is left, |x| < 2^-10 + + Then e^x is approximated as + + e^x = 2^n ( e^(t/512 + delta[t]) + + ( e^(t/512 + delta[t]) + * ( p(x + delta[t] + n * ln(2)) - delta ) ) ) + + where + - p(x) is a polynomial approximating e(x)-1; + - e^(t/512 + delta[t]) is obtained from a table. + + The table used is the same one as for the double precision version; + since we have the table, we might as well use it. + + It turns out to be faster to do calculations in double precision than + to perform an 'accurate table method' expf, because of the range reduction + overhead (compare exp2f). + */ +#ifndef _GNU_SOURCE +#define _GNU_SOURCE #endif +#include <float.h> +#include <ieee754.h> +#include <math.h> +#include <fenv.h> +#include <inttypes.h> +#include <math_private.h> + +extern const float __exp_deltatable[178]; +extern const double __exp_atable[355] /* __attribute__((mode(DF))) */; + +static const volatile float TWOM100 = 7.88860905e-31; +static const volatile float TWO127 = 1.7014118346e+38; + +float +__ieee754_expf (float x) { - float y,hi,lo,c,t; - int32_t k,xsb; - u_int32_t hx; - - GET_FLOAT_WORD(hx,x); - xsb = (hx>>31)&1; /* sign bit of x */ - hx &= 0x7fffffff; /* high word of |x| */ - - /* filter out non-finite argument */ - if(hx >= 0x42b17218) { /* if |x|>=88.721... */ - if(hx>0x7f800000) - return x+x; /* NaN */ - if(hx==0x7f800000) - return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ - if(x > o_threshold) return huge*huge; /* overflow */ - if(x < u_threshold) return twom100*twom100; /* underflow */ - } + static const uint32_t a_minf = 0xff800000; + static const float himark = 88.72283935546875; + static const float lomark = -103.972084045410; + /* Check for usual case. */ + if (isless (x, himark) && isgreater (x, lomark)) + { + static const float TWO43 = 8796093022208.0; + static const float TWO23 = 8388608.0; + /* 1/ln(2). */ +#undef M_1_LN2 + static const float M_1_LN2 = 1.44269502163f; + /* ln(2) */ +#undef M_LN2 + static const double M_LN2 = .6931471805599452862; + + int tval; + double x22, t, result, dx; + float n, delta; + union ieee754_double ex2_u; + fenv_t oldenv; + + feholdexcept (&oldenv); + fesetround (FE_TONEAREST); - /* argument reduction */ - if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ - if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; - } else { - k = invln2*x+halF[xsb]; - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } - x = hi - lo; + /* Calculate n. */ + if (x >= 0) + { + n = x * M_1_LN2 + TWO23; + n -= TWO23; } - else if(hx < 0x31800000) { /* when |x|<2**-28 */ - if(huge+x>one) return one+x;/* trigger inexact */ + else + { + n = x * M_1_LN2 - TWO23; + n += TWO23; } - else k = 0; - - /* x is now in primary range */ - t = x*x; - c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-(float)2.0)-x); - else y = one-((lo-(x*c)/((float)2.0-c))-hi); - if(k >= -125) { - u_int32_t hy; - GET_FLOAT_WORD(hy,y); - SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */ - return y; - } else { - u_int32_t hy; - GET_FLOAT_WORD(hy,y); - SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */ - return y*twom100; + dx = x - n*M_LN2; + if (dx >= 0) + { + /* Calculate t/512. */ + t = dx + TWO43; + t -= TWO43; + dx -= t; + + /* Compute tval = t. */ + tval = (int) (t * 512.0); + + delta = - __exp_deltatable[tval]; } + else + { + /* As above, but x is negative. */ + t = dx - TWO43; + t += TWO43; + dx -= t; + + tval = (int) (t * 512.0); + + delta = __exp_deltatable[-tval]; + } + + /* Compute ex2 = 2^n e^(t/512+delta[t]). */ + ex2_u.d = __exp_atable[tval+177]; + ex2_u.ieee.exponent += (int) n; + + /* Approximate e^(dx+delta) - 1, using a second-degree polynomial, + with maximum error in [-2^-10-2^-28,2^-10+2^-28] + less than 5e-11. */ + x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta; + + /* Return result. */ + fesetenv (&oldenv); + + result = x22 * ex2_u.d + ex2_u.d; + return (float) result; + } + /* Exceptional cases: */ + else if (isless (x, himark)) + { + if (x == *(const float *) &a_minf) + /* e^-inf == 0, with no error. */ + return 0; + else + /* Underflow */ + return TWOM100 * TWOM100; + } + else + /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ + return TWO127*x; } |