diff options
Diffstat (limited to 'sysdeps/libm-ieee754/e_acos.c')
-rw-r--r-- | sysdeps/libm-ieee754/e_acos.c | 144 |
1 files changed, 0 insertions, 144 deletions
diff --git a/sysdeps/libm-ieee754/e_acos.c b/sysdeps/libm-ieee754/e_acos.c deleted file mode 100644 index eb4080a8b8..0000000000 --- a/sysdeps/libm-ieee754/e_acos.c +++ /dev/null @@ -1,144 +0,0 @@ -/* @(#)e_acos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, - for performance improvement on pipelined processors. - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $"; -#endif - -/* __ieee754_acos(x) - * Method : - * acos(x) = pi/2 - asin(x) - * acos(-x) = pi/2 + asin(x) - * For |x|<=0.5 - * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) - * For x>0.5 - * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) - * = 2asin(sqrt((1-x)/2)) - * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) - * = 2f + (2c + 2s*z*R(z)) - * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term - * for f so that f+c ~ sqrt(z). - * For x<-0.5 - * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) - * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - * Function needed: __ieee754_sqrt - */ - -#include "math.h" -#include "math_private.h" -#define one qS[0] - -#ifdef __STDC__ -static const double -#else -static double -#endif -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ -pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ -pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ - -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ - 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ - -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ - 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ - 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */ -qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ - 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ - -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ - 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */ - -#ifdef __STDC__ - double __ieee754_acos(double x) -#else - double __ieee754_acos(x) - double x; -#endif -{ - double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,z2,z4,z6; - int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x3ff00000) { /* |x| >= 1 */ - u_int32_t lx; - GET_LOW_WORD(lx,x); - if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ - if(hx>0) return 0.0; /* acos(1) = 0 */ - else return pi+2.0*pio2_lo; /* acos(-1)= pi */ - } - return (x-x)/(x-x); /* acos(|x|>1) is NaN */ - } - if(ix<0x3fe00000) { /* |x| < 0.5 */ - if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ - z = x*x; -#ifdef DO_NOT_USE_THIS - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); -#else - p1 = z*pS[0]; z2=z*z; - p2 = pS[1]+z*pS[2]; z4=z2*z2; - p3 = pS[3]+z*pS[4]; z6=z4*z2; - q1 = one+z*qS[1]; - q2 = qS[2]+z*qS[3]; - p = p1 + z2*p2 + z4*p3 + z6*pS[5]; - q = q1 + z2*q2 + z4*qS[4]; -#endif - r = p/q; - return pio2_hi - (x - (pio2_lo-x*r)); - } else if (hx<0) { /* x < -0.5 */ - z = (one+x)*0.5; -#ifdef DO_NOT_USE_THIS - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); -#else - p1 = z*pS[0]; z2=z*z; - p2 = pS[1]+z*pS[2]; z4=z2*z2; - p3 = pS[3]+z*pS[4]; z6=z4*z2; - q1 = one+z*qS[1]; - q2 = qS[2]+z*qS[3]; - p = p1 + z2*p2 + z4*p3 + z6*pS[5]; - q = q1 + z2*q2 + z4*qS[4]; -#endif - s = __ieee754_sqrt(z); - r = p/q; - w = r*s-pio2_lo; - return pi - 2.0*(s+w); - } else { /* x > 0.5 */ - z = (one-x)*0.5; - s = __ieee754_sqrt(z); - df = s; - SET_LOW_WORD(df,0); - c = (z-df*df)/(s+df); -#ifdef DO_NOT_USE_THIS - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); -#else - p1 = z*pS[0]; z2=z*z; - p2 = pS[1]+z*pS[2]; z4=z2*z2; - p3 = pS[3]+z*pS[4]; z6=z4*z2; - q1 = one+z*qS[1]; - q2 = qS[2]+z*qS[3]; - p = p1 + z2*p2 + z4*p3 + z6*pS[5]; - q = q1 + z2*q2 + z4*qS[4]; -#endif - r = p/q; - w = r*s+c; - return 2.0*(df+w); - } -} |