diff options
Diffstat (limited to 'sysdeps/libm-i387')
-rw-r--r-- | sysdeps/libm-i387/s_cexp.S | 248 | ||||
-rw-r--r-- | sysdeps/libm-i387/s_cexpf.S | 245 | ||||
-rw-r--r-- | sysdeps/libm-i387/s_cexpl.S | 249 |
3 files changed, 742 insertions, 0 deletions
diff --git a/sysdeps/libm-i387/s_cexp.S b/sysdeps/libm-i387/s_cexp.S new file mode 100644 index 0000000000..48e002b2f6 --- /dev/null +++ b/sysdeps/libm-i387/s_cexp.S @@ -0,0 +1,248 @@ +/* ix87 specific implementation of complex exponential function for double. + Copyright (C) 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <sysdep.h> + +#ifdef __ELF__ + .section .rodata +#else + .text +#endif + .align ALIGNARG(4) + ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object) +huge_nan_null_null: + .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f + .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f + .double 0.0 + .double 0.0 + .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f + .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f + .double 0.0 + .byte 0, 0, 0, 0, 0, 0, 0, 0x80 + ASM_SIZE_DIRECTIVE(huge_nan_null_null) + + ASM_TYPE_DIRECTIVE(twopi,@object) +twopi: + .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40 + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(twopi) + + ASM_TYPE_DIRECTIVE(l2e,@object) +l2e: + .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(l2e) + + ASM_TYPE_DIRECTIVE(one,@object) +one: .double 1.0 + ASM_SIZE_DIRECTIVE(one) + + +#ifdef PIC +#define MO(op) op##@GOTOFF(%ecx) +#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f) +#else +#define MO(op) op +#define MOX(op,x,f) op(,x,f) +#endif + + .text +ENTRY(__cexp) + fldl 8(%esp) /* x */ + fxam + fnstsw + fldl 16(%esp) /* y : x */ +#ifdef PIC + call 1f +1: popl %ecx + addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx +#endif + movb %ah, %dh + andb $0x45, %ah + cmpb $0x05, %ah + je 1f /* Jump if real part is +-Inf */ + cmpb $0x01, %ah + je 2f /* Jump if real part is NaN */ + + fxam /* y : x */ + fnstsw + /* If the imaginary part is not finite we return NaN+i NaN, as + for the case when the real part is NaN. A test for +-Inf and + NaN would be necessary. But since we know the stack register + we applied `fxam' to is not empty we can simply use one test. + Check your FPU manual for more information. */ + andb $0x01, %ah + cmpb $0x01, %ah + je 2f + + /* We have finite numbers in the real and imaginary part. Do + the real work now. */ + fxch /* x : y */ + fldt MO(l2e) /* log2(e) : x : y */ + fmulp /* x * log2(e) : y */ + fld %st /* x * log2(e) : x * log2(e) : y */ + frndint /* int(x * log2(e)) : x * log2(e) : y */ + fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */ + fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */ + f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */ + faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */ + fscale /* e^x : int(x * log2(e)) : y */ + fst %st(1) /* e^x : e^x : y */ + fxch %st(2) /* y : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 7f + fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */ + fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */ + movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpl 8(%eax) + fstpl (%eax) + ret $4 + + /* We have to reduce the argument to fsincos. */ + .align ALIGNARG(4) +7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */ + fxch /* y : 2*pi : e^x : e^x */ +8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 8b + fstp %st(1) /* y%(2*pi) : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fmulp %st, %st(3) + fmulp %st, %st(1) + movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpl 8(%eax) + fstpl (%eax) + ret $4 + + /* The real part is +-inf. We must make further differences. */ + .align ALIGNARG(4) +1: fxam /* y : x */ + fnstsw + movb %ah, %dl + andb $0x01, %ah /* See above why 0x01 is usable here. */ + cmpb $0x01, %ah + je 3f + + + /* The real part is +-Inf and the imaginary part is finite. */ + andl $0x245, %edx + cmpb $0x40, %dl /* Imaginary part == 0? */ + je 4f /* Yes -> */ + + fxch /* x : y */ + shrl $5, %edx + fstp %st(0) /* y */ /* Drop the real part. */ + andl $16, %edx /* This puts the sign bit of the real part + in bit 4. So we can use it to index a + small array to select 0 or Inf. */ + fsincos /* cos(y) : sin(y) */ + fnstsw + testl $0x0400, %eax + jnz 5f + fldl MOX(huge_nan_null_null,%edx,1) + movl 4(%esp), %edx /* Pointer to memory for result. */ + fstl 8(%edx) + fstpl (%edx) + ftst + fnstsw + shll $23, %eax + andl $0x80000000, %eax + orl %eax, 4(%edx) + fstp %st(0) + ftst + fnstsw + shll $23, %eax + andl $0x80000000, %eax + orl %eax, 12(%edx) + fstp %st(0) + ret $4 + /* We must reduce the argument to fsincos. */ + .align ALIGNARG(4) +5: fldt MO(twopi) + fxch +6: fprem1 + fnstsw + testl $0x400, %eax + jnz 6b + fstp %st(1) + fsincos + fldl MOX(huge_nan_null_null,%edx,1) + movl 4(%esp), %edx /* Pointer to memory for result. */ + fstl 8(%edx) + fstpl (%edx) + ftst + fnstsw + shll $23, %eax + andl $0x80000000, %eax + orl %eax, 4(%edx) + fstp %st(0) + ftst + fnstsw + shll $23, %eax + andl $0x80000000, %eax + orl %eax, 12(%edx) + fstp %st(0) + ret $4 + + /* The real part is +-Inf and the imaginary part is +-0. So return + +-Inf+-0i. */ + .align ALIGNARG(4) +4: movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpl 8(%eax) + shrl $5, %edx + fstp %st(0) + andl $16, %edx + fldl MOX(huge_nan_null_null,%edx,1) + fstpl (%eax) + ret $4 + + /* The real part is +-Inf, the imaginary is also is not finite. */ + .align ALIGNARG(4) +3: fstp %st(0) + fstp %st(0) /* <empty> */ + movl %edx, %eax + shrl $5, %edx + shll $4, %eax + andl $16, %edx + andl $32, %eax + orl %eax, %edx + movl 4(%esp), %eax /* Pointer to memory for result. */ + + fldl MOX(huge_nan_null_null,%edx,1) + fldl MOX(huge_nan_null_null+8,%edx,1) + fstpl 8(%eax) + fstpl (%eax) + ret $4 + + /* The real part is NaN. */ + .align ALIGNARG(4) +2: fstp %st(0) + fstp %st(0) + movl 4(%esp), %eax /* Pointer to memory for result. */ + fldl MO(huge_nan_null_null+8) + fstl (%eax) + fstpl 8(%eax) + ret $4 + +END(__cexp) +weak_alias (__cexp, cexp) diff --git a/sysdeps/libm-i387/s_cexpf.S b/sysdeps/libm-i387/s_cexpf.S new file mode 100644 index 0000000000..6fd414b045 --- /dev/null +++ b/sysdeps/libm-i387/s_cexpf.S @@ -0,0 +1,245 @@ +/* ix87 specific implementation of complex exponential function for double. + Copyright (C) 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <sysdep.h> + +#ifdef __ELF__ + .section .rodata +#else + .text +#endif + .align ALIGNARG(4) + ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object) +huge_nan_null_null: + .byte 0, 0, 0x80, 0x7f + .byte 0, 0, 0xc0, 0x7f + .float 0.0 + .float 0.0 + .byte 0, 0, 0x80, 0x7f + .byte 0, 0, 0xc0, 0x7f + .float 0.0 + .byte 0, 0, 0, 0x80 + ASM_SIZE_DIRECTIVE(huge_nan_null_null) + + ASM_TYPE_DIRECTIVE(twopi,@object) +twopi: + .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40 + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(twopi) + + ASM_TYPE_DIRECTIVE(l2e,@object) +l2e: + .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(l2e) + + ASM_TYPE_DIRECTIVE(one,@object) +one: .double 1.0 + ASM_SIZE_DIRECTIVE(one) + + +#ifdef PIC +#define MO(op) op##@GOTOFF(%ecx) +#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f) +#else +#define MO(op) op +#define MOX(op,x,f) op(,x,f) +#endif + + .text +ENTRY(__cexpf) + flds 4(%esp) /* x */ + fxam + fnstsw + flds 8(%esp) /* y : x */ +#ifdef PIC + call 1f +1: popl %ecx + addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx +#endif + movb %ah, %dh + andb $0x45, %ah + cmpb $0x05, %ah + je 1f /* Jump if real part is +-Inf */ + cmpb $0x01, %ah + je 2f /* Jump if real part is NaN */ + + fxam /* y : x */ + fnstsw + /* If the imaginary part is not finite we return NaN+i NaN, as + for the case when the real part is NaN. A test for +-Inf and + NaN would be necessary. But since we know the stack register + we applied `fxam' to is not empty we can simply use one test. + Check your FPU manual for more information. */ + andb $0x01, %ah + cmpb $0x01, %ah + je 2f + + /* We have finite numbers in the real and imaginary part. Do + the real work now. */ + fxch /* x : y */ + fldt MO(l2e) /* log2(e) : x : y */ + fmulp /* x * log2(e) : y */ + fld %st /* x * log2(e) : x * log2(e) : y */ + frndint /* int(x * log2(e)) : x * log2(e) : y */ + fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */ + fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */ + f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */ + faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */ + fscale /* e^x : int(x * log2(e)) : y */ + fst %st(1) /* e^x : e^x : y */ + fxch %st(2) /* y : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 7f + fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */ + fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */ + subl $8, %esp + fstps 4(%esp) + fstps (%esp) + popl %eax + popl %edx + ret + + /* We have to reduce the argument to fsincos. */ + .align ALIGNARG(4) +7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */ + fxch /* y : 2*pi : e^x : e^x */ +8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 8b + fstp %st(1) /* y%(2*pi) : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fmulp %st, %st(3) + fmulp %st, %st(1) + subl $8, %esp + fstps 4(%esp) + fstps (%esp) + popl %eax + popl %edx + ret + + /* The real part is +-inf. We must make further differences. */ + .align ALIGNARG(4) +1: fxam /* y : x */ + fnstsw + movb %ah, %dl + andb $0x01, %ah /* See above why 0x01 is usable here. */ + cmpb $0x01, %ah + je 3f + + + /* The real part is +-Inf and the imaginary part is finite. */ + andl $0x245, %edx + cmpb $0x40, %dl /* Imaginary part == 0? */ + je 4f /* Yes -> */ + + fxch /* x : y */ + shrl $6, %edx + fstp %st(0) /* y */ /* Drop the real part. */ + andl $8, %edx /* This puts the sign bit of the real part + in bit 3. So we can use it to index a + small array to select 0 or Inf. */ + fsincos /* cos(y) : sin(y) */ + fnstsw + testl $0x0400, %eax + jnz 5f + fxch + ftst + fnstsw + fstp %st(0) + shll $23, %eax + andl $0x80000000, %eax + orl MOX(huge_nan_null_null,%edx,1), %eax + movl MOX(huge_nan_null_null,%edx,1), %ecx + movl %eax, %edx + ftst + fnstsw + fstp %st(0) + shll $23, %eax + andl $0x80000000, %eax + orl %ecx, %eax + ret + /* We must reduce the argument to fsincos. */ + .align ALIGNARG(4) +5: fldt MO(twopi) + fxch +6: fprem1 + fnstsw + testl $0x400, %eax + jnz 6b + fstp %st(1) + fsincos + fxch + ftst + fnstsw + fstp %st(0) + shll $23, %eax + andl $0x80000000, %eax + orl MOX(huge_nan_null_null,%edx,1), %eax + movl MOX(huge_nan_null_null,%edx,1), %ecx + movl %eax, %edx + ftst + fnstsw + fstp %st(0) + shll $23, %eax + andl $0x80000000, %eax + orl %ecx, %eax + ret + + /* The real part is +-Inf and the imaginary part is +-0. So return + +-Inf+-0i. */ + .align ALIGNARG(4) +4: subl $4, %esp + fstps (%esp) + shrl $6, %edx + fstp %st(0) + andl $8, %edx + movl MOX(huge_nan_null_null,%edx,1), %eax + popl %edx + ret + + /* The real part is +-Inf, the imaginary is also is not finite. */ + .align ALIGNARG(4) +3: fstp %st(0) + fstp %st(0) /* <empty> */ + movl %edx, %eax + shrl $6, %edx + shll $3, %eax + andl $8, %edx + andl $16, %eax + orl %eax, %edx + + movl MOX(huge_nan_null_null,%edx,1), %eax + movl MOX(huge_nan_null_null+4,%edx,1), %edx + ret + + /* The real part is NaN. */ + .align ALIGNARG(4) +2: fstp %st(0) + fstp %st(0) + movl MO(huge_nan_null_null+4), %eax + movl %eax, %edx + ret + +END(__cexpf) +weak_alias (__cexpf, cexpf) diff --git a/sysdeps/libm-i387/s_cexpl.S b/sysdeps/libm-i387/s_cexpl.S new file mode 100644 index 0000000000..fa31e74162 --- /dev/null +++ b/sysdeps/libm-i387/s_cexpl.S @@ -0,0 +1,249 @@ +/* ix87 specific implementation of complex exponential function for double. + Copyright (C) 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <sysdep.h> + +#ifdef __ELF__ + .section .rodata +#else + .text +#endif + .align ALIGNARG(4) + ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object) +huge_nan_null_null: + .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f + .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f + .double 0.0 + .double 0.0 + .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f + .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f + .double 0.0 + .byte 0, 0, 0, 0, 0, 0, 0, 0x80 + ASM_SIZE_DIRECTIVE(huge_nan_null_null) + + ASM_TYPE_DIRECTIVE(twopi,@object) +twopi: + .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40 + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(twopi) + + ASM_TYPE_DIRECTIVE(l2e,@object) +l2e: + .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f + .byte 0, 0, 0, 0, 0, 0 + ASM_SIZE_DIRECTIVE(l2e) + + ASM_TYPE_DIRECTIVE(one,@object) +one: .double 1.0 + ASM_SIZE_DIRECTIVE(one) + + +#ifdef PIC +#define MO(op) op##@GOTOFF(%ecx) +#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f) +#else +#define MO(op) op +#define MOX(op,x,f) op(,x,f) +#endif + + .text +ENTRY(__cexpl) + fldt 8(%esp) /* x */ + fxam + fnstsw + fldt 20(%esp) /* y : x */ +#ifdef PIC + call 1f +1: popl %ecx + addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx +#endif + movb %ah, %dh + andb $0x45, %ah + cmpb $0x05, %ah + je 1f /* Jump if real part is +-Inf */ + cmpb $0x01, %ah + je 2f /* Jump if real part is NaN */ + + fxam /* y : x */ + fnstsw + /* If the imaginary part is not finite we return NaN+i NaN, as + for the case when the real part is NaN. A test for +-Inf and + NaN would be necessary. But since we know the stack register + we applied `fxam' to is not empty we can simply use one test. + Check your FPU manual for more information. */ + andb $0x01, %ah + cmpb $0x01, %ah + je 2f + + /* We have finite numbers in the real and imaginary part. Do + the real work now. */ + fxch /* x : y */ + fldt MO(l2e) /* log2(e) : x : y */ + fmulp /* x * log2(e) : y */ + fld %st /* x * log2(e) : x * log2(e) : y */ + frndint /* int(x * log2(e)) : x * log2(e) : y */ + fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */ + fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */ + f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */ + faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */ + fscale /* e^x : int(x * log2(e)) : y */ + fst %st(1) /* e^x : e^x : y */ + fxch %st(2) /* y : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 7f + fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */ + fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */ + movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpt 12(%eax) + fstpt (%eax) + ret $4 + + /* We have to reduce the argument to fsincos. */ + .align ALIGNARG(4) +7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */ + fxch /* y : 2*pi : e^x : e^x */ +8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */ + fnstsw + testl $0x400, %eax + jnz 8b + fstp %st(1) /* y%(2*pi) : e^x : e^x */ + fsincos /* cos(y) : sin(y) : e^x : e^x */ + fmulp %st, %st(3) + fmulp %st, %st(1) + movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpt 12(%eax) + fstpt (%eax) + ret $4 + + /* The real part is +-inf. We must make further differences. */ + .align ALIGNARG(4) +1: fxam /* y : x */ + fnstsw + movb %ah, %dl + andb $0x01, %ah /* See above why 0x01 is usable here. */ + cmpb $0x01, %ah + je 3f + + + /* The real part is +-Inf and the imaginary part is finite. */ + andl $0x245, %edx + cmpb $0x40, %dl /* Imaginary part == 0? */ + je 4f /* Yes -> */ + + fxch /* x : y */ + shrl $5, %edx + fstp %st(0) /* y */ /* Drop the real part. */ + andl $16, %edx /* This puts the sign bit of the real part + in bit 4. So we can use it to index a + small array to select 0 or Inf. */ + fsincos /* cos(y) : sin(y) */ + fnstsw + testl $0x0400, %eax + jnz 5f + fldl MOX(huge_nan_null_null,%edx,1) + movl 4(%esp), %edx /* Pointer to memory for result. */ + fstl 8(%edx) + fstpl (%edx) + ftst + fnstsw + shll $7, %eax + andl $0x8000, %eax + orl %eax, 8(%edx) + fstp %st(0) + ftst + fnstsw + shll $7, %eax + andl $0x8000, %eax + orl %eax, 20(%edx) + fstp %st(0) + ret $4 + /* We must reduce the argument to fsincos. */ + .align ALIGNARG(4) +5: fldt MO(twopi) + fxch +6: fprem1 + fnstsw + testl $0x400, %eax + jnz 6b + fstp %st(1) + fsincos + fldl MOX(huge_nan_null_null,%edx,1) + movl 4(%esp), %edx /* Pointer to memory for result. */ + fstl 8(%edx) + fstpl (%edx) + ftst + fnstsw + shll $7, %eax + andl $0x8000, %eax + orl %eax, 8(%edx) + fstp %st(0) + ftst + fnstsw + shll $7, %eax + andl $0x8000, %eax + orl %eax, 20(%edx) + fstp %st(0) + ret $4 + + /* The real part is +-Inf and the imaginary part is +-0. So return + +-Inf+-0i. */ + .align ALIGNARG(4) +4: movl 4(%esp), %eax /* Pointer to memory for result. */ + fstpt 12(%eax) + shrl $5, %edx + fstp %st(0) + andl $16, %edx + fldl MOX(huge_nan_null_null,%edx,1) + fstpt (%eax) + ret $4 + + /* The real part is +-Inf, the imaginary is also is not finite. */ + .align ALIGNARG(4) +3: fstp %st(0) + fstp %st(0) /* <empty> */ + movl %edx, %eax + shrl $5, %edx + shll $4, %eax + andl $16, %edx + andl $32, %eax + orl %eax, %edx + movl 4(%esp), %eax /* Pointer to memory for result. */ + + fldl MOX(huge_nan_null_null,%edx,1) + fldl MOX(huge_nan_null_null+8,%edx,1) + fstpt 12(%eax) + fstpt (%eax) + ret $4 + + /* The real part is NaN. */ + .align ALIGNARG(4) +2: fstp %st(0) + fstp %st(0) + movl 4(%esp), %eax /* Pointer to memory for result. */ + fldl MO(huge_nan_null_null+8) + fld %st(0) + fstpt (%eax) + fstpt 12(%eax) + ret $4 + +END(__cexpl) +weak_alias (__cexpl, cexpl) |