summary refs log tree commit diff
path: root/sysdeps/libm-i387/s_cexpf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-i387/s_cexpf.S')
-rw-r--r--sysdeps/libm-i387/s_cexpf.S255
1 files changed, 0 insertions, 255 deletions
diff --git a/sysdeps/libm-i387/s_cexpf.S b/sysdeps/libm-i387/s_cexpf.S
deleted file mode 100644
index d6dcebcb23..0000000000
--- a/sysdeps/libm-i387/s_cexpf.S
+++ /dev/null
@@ -1,255 +0,0 @@
-/* ix87 specific implementation of complex exponential function for double.
-   Copyright (C) 1997 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Library General Public License as
-   published by the Free Software Foundation; either version 2 of the
-   License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Library General Public License for more details.
-
-   You should have received a copy of the GNU Library General Public
-   License along with the GNU C Library; see the file COPYING.LIB.  If not,
-   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
-
-#include <sysdep.h>
-
-#ifdef __ELF__
-	.section .rodata
-#else
-	.text
-#endif
-	.align ALIGNARG(4)
-	ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object)
-huge_nan_null_null:
-	.byte 0, 0, 0x80, 0x7f
-	.byte 0, 0, 0xc0, 0x7f
-	.float	0.0
-zero:	.float	0.0
-infinity:
-	.byte 0, 0, 0x80, 0x7f
-	.byte 0, 0, 0xc0, 0x7f
-	.float 0.0
-	.byte 0, 0, 0, 0x80
-	ASM_SIZE_DIRECTIVE(huge_nan_null_null)
-
-	ASM_TYPE_DIRECTIVE(twopi,@object)
-twopi:
-	.byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40
-	.byte 0, 0, 0, 0, 0, 0
-	ASM_SIZE_DIRECTIVE(twopi)
-
-	ASM_TYPE_DIRECTIVE(l2e,@object)
-l2e:
-	.byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f
-	.byte 0, 0, 0, 0, 0, 0
-	ASM_SIZE_DIRECTIVE(l2e)
-
-	ASM_TYPE_DIRECTIVE(one,@object)
-one:	.double 1.0
-	ASM_SIZE_DIRECTIVE(one)
-
-
-#ifdef PIC
-#define MO(op) op##@GOTOFF(%ecx)
-#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
-#else
-#define MO(op) op
-#define MOX(op,x,f) op(,x,f)
-#endif
-
-	.text
-ENTRY(__cexpf)
-	flds	4(%esp)			/* x */
-	fxam
-	fnstsw
-	flds	8(%esp)			/* y : x */
-#ifdef  PIC
-        call    1f
-1:      popl    %ecx
-        addl    $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
-#endif
-	movb	%ah, %dh
-	andb	$0x45, %ah
-	cmpb	$0x05, %ah
-	je	1f			/* Jump if real part is +-Inf */
-	cmpb	$0x01, %ah
-	je	2f			/* Jump if real part is NaN */
-
-	fxam				/* y : x */
-	fnstsw
-	/* If the imaginary part is not finite we return NaN+i NaN, as
-	   for the case when the real part is NaN.  A test for +-Inf and
-	   NaN would be necessary.  But since we know the stack register
-	   we applied `fxam' to is not empty we can simply use one test.
-	   Check your FPU manual for more information.  */
-	andb	$0x01, %ah
-	cmpb	$0x01, %ah
-	je	20f
-
-	/* We have finite numbers in the real and imaginary part.  Do
-	   the real work now.  */
-	fxch			/* x : y */
-	fldt	MO(l2e)		/* log2(e) : x : y */
-	fmulp			/* x * log2(e) : y */
-	fld	%st		/* x * log2(e) : x * log2(e) : y */
-	frndint			/* int(x * log2(e)) : x * log2(e) : y */
-	fsubr	%st, %st(1)	/* int(x * log2(e)) : frac(x * log2(e)) : y */
-	fxch			/* frac(x * log2(e)) : int(x * log2(e)) : y */
-	f2xm1			/* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */
-	faddl	MO(one)		/* 2^frac(x * log2(e)) : int(x * log2(e)) : y */
-	fscale			/* e^x : int(x * log2(e)) : y */
-	fst	%st(1)		/* e^x : e^x : y */
-	fxch	%st(2)		/* y : e^x : e^x */
-	fsincos			/* cos(y) : sin(y) : e^x : e^x */
-	fnstsw
-	testl	$0x400, %eax
-	jnz	7f
-	fmulp	%st, %st(3)	/* sin(y) : e^x : e^x * cos(y) */
-	fmulp	%st, %st(1)	/* e^x * sin(y) : e^x * cos(y) */
-	subl	$8, %esp
-	fstps	4(%esp)
-	fstps	(%esp)
-	popl	%eax
-	popl	%edx
-	ret
-
-	/* We have to reduce the argument to fsincos.  */
-	.align ALIGNARG(4)
-7:	fldt	MO(twopi)	/* 2*pi : y : e^x : e^x */
-	fxch			/* y : 2*pi : e^x : e^x */
-8:	fprem1			/* y%(2*pi) : 2*pi : e^x : e^x */
-	fnstsw
-	testl	$0x400, %eax
-	jnz	8b
-	fstp	%st(1)		/* y%(2*pi) : e^x : e^x */
-	fsincos			/* cos(y) : sin(y) : e^x : e^x */
-	fmulp	%st, %st(3)
-	fmulp	%st, %st(1)
-	subl	$8, %esp
-	fstps	4(%esp)
-	fstps	(%esp)
-	popl	%eax
-	popl	%edx
-	ret
-
-	/* The real part is +-inf.  We must make further differences.  */
-	.align ALIGNARG(4)
-1:	fxam			/* y : x */
-	fnstsw
-	movb	%ah, %dl
-	testb	$0x01, %ah	/* See above why 0x01 is usable here.  */
-	jne	3f
-
-
-	/* The real part is +-Inf and the imaginary part is finite.  */
-	andl	$0x245, %edx
-	cmpb	$0x40, %dl	/* Imaginary part == 0?  */
-	je	4f		/* Yes ->  */
-
-	fxch			/* x : y */
-	shrl	$6, %edx
-	fstp	%st(0)		/* y */ /* Drop the real part.  */
-	andl	$8, %edx	/* This puts the sign bit of the real part
-				   in bit 3.  So we can use it to index a
-				   small array to select 0 or Inf.  */
-	fsincos			/* cos(y) : sin(y) */
-	fnstsw
-	testl	$0x0400, %eax
-	jnz	5f
-	fxch
-	ftst
-	fnstsw
-	fstp	%st(0)
-	shll	$23, %eax
-	andl	$0x80000000, %eax
-	orl	MOX(huge_nan_null_null,%edx,1), %eax
-	movl	MOX(huge_nan_null_null,%edx,1), %ecx
-	movl	%eax, %edx
-	ftst
-	fnstsw
-	fstp	%st(0)
-	shll	$23, %eax
-	andl	$0x80000000, %eax
-	orl	%ecx, %eax
-	ret
-	/* We must reduce the argument to fsincos.  */
-	.align ALIGNARG(4)
-5:	fldt	MO(twopi)
-	fxch
-6:	fprem1
-	fnstsw
-	testl	$0x400, %eax
-	jnz	6b
-	fstp	%st(1)
-	fsincos
-	fxch
-	ftst
-	fnstsw
-	fstp	%st(0)
-	shll	$23, %eax
-	andl	$0x80000000, %eax
-	orl	MOX(huge_nan_null_null,%edx,1), %eax
-	movl	MOX(huge_nan_null_null,%edx,1), %ecx
-	movl	%eax, %edx
-	ftst
-	fnstsw
-	fstp	%st(0)
-	shll	$23, %eax
-	andl	$0x80000000, %eax
-	orl	%ecx, %eax
-	ret
-
-	/* The real part is +-Inf and the imaginary part is +-0.  So return
-	   +-Inf+-0i.  */
-	.align ALIGNARG(4)
-4:	subl	$4, %esp
-	fstps	(%esp)
-	shrl	$6, %edx
-	fstp	%st(0)
-	andl	$8, %edx
-	movl	MOX(huge_nan_null_null,%edx,1), %eax
-	popl	%edx
-	ret
-
-	/* The real part is +-Inf, the imaginary is also is not finite.  */
-	.align ALIGNARG(4)
-3:	fstp	%st(0)
-	fstp	%st(0)		/* <empty> */
-	andb	$0x45, %ah
-	andb	$0x47, %dh
-	xorb	%dh, %ah
-	jnz	30f
-	flds	MO(infinity)	/* Raise invalid exception.  */
-	fmuls	MO(zero)
-	fstp	%st(0)
-30:	movl	%edx, %eax
-	shrl	$6, %edx
-	shll	$3, %eax
-	andl	$8, %edx
-	andl	$16, %eax
-	orl	%eax, %edx
-
-	movl	MOX(huge_nan_null_null,%edx,1), %eax
-	movl	MOX(huge_nan_null_null+4,%edx,1), %edx
-	ret
-
-	/* The real part is NaN.  */
-	.align ALIGNARG(4)
-20:	flds	MO(infinity)		/* Raise invalid exception.  */
-	fmuls	MO(zero)
-	fstp	%st(0)
-2:	fstp	%st(0)
-	fstp	%st(0)
-	movl	MO(huge_nan_null_null+4), %eax
-	movl	%eax, %edx
-	ret
-
-END(__cexpf)
-weak_alias (__cexpf, cexpf)