about summary refs log tree commit diff
path: root/sysdeps/ieee754
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r--sysdeps/ieee754/flt-32/s_cosf.c161
-rw-r--r--sysdeps/ieee754/flt-32/s_sincosf.h171
-rw-r--r--sysdeps/ieee754/flt-32/s_sinf.c172
3 files changed, 134 insertions, 370 deletions
diff --git a/sysdeps/ieee754/flt-32/s_cosf.c b/sysdeps/ieee754/flt-32/s_cosf.c
index 061264d259..13b5ffead8 100644
--- a/sysdeps/ieee754/flt-32/s_cosf.c
+++ b/sysdeps/ieee754/flt-32/s_cosf.c
@@ -1,5 +1,5 @@
 /* Compute cosine of argument.
-   Copyright (C) 2017-2018 Free Software Foundation, Inc.
+   Copyright (C) 2018 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
 
    The GNU C Library is free software; you can redistribute it and/or
@@ -16,10 +16,11 @@
    License along with the GNU C Library; if not, see
    <http://www.gnu.org/licenses/>.  */
 
-#include <errno.h>
+#include <stdint.h>
 #include <math.h>
-#include <math_private.h>
+#include <math-barriers.h>
 #include <libm-alias-float.h>
+#include "math_config.h"
 #include "s_sincosf.h"
 
 #ifndef COSF
@@ -28,121 +29,57 @@
 # define COSF_FUNC COSF
 #endif
 
+/* Fast cosf implementation.  Worst-case ULP is 0.5607, maximum relative
+   error is 0.5303 * 2^-23.  A single-step range reduction is used for
+   small values.  Large inputs have their range reduced using fast integer
+   arithmetic.
+*/
 float
-COSF_FUNC (float x)
+COSF_FUNC (float y)
 {
-  double theta = x;
-  double abstheta = fabs (theta);
-  if (isless (abstheta, M_PI_4))
+  double x = y;
+  double s;
+  int n;
+  const sincos_t *p = &__sincosf_table[0];
+
+  if (abstop12 (y) < abstop12 (pio4))
+    {
+      double x2 = x * x;
+
+      if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-12f)))
+	return 1.0f;
+
+      return sinf_poly (x, x2, p, 1);
+    }
+  else if (__glibc_likely (abstop12 (y) < abstop12 (120.0f)))
     {
-      double cx;
-      if (abstheta >= 0x1p-5)
-	{
-	  const double theta2 = theta * theta;
-	  /* Chebyshev polynomial of the form for cos:
-	   * 1 + x^2 (C0 + x^2 (C1 + x^2 (C2 + x^2 (C3 + x^2 * C4)))).  */
-	  cx = C3 + theta2 * C4;
-	  cx = C2 + theta2 * cx;
-	  cx = C1 + theta2 * cx;
-	  cx = C0 + theta2 * cx;
-	  cx = 1. + theta2 * cx;
-	  return cx;
-	}
-      else if (abstheta >= 0x1p-27)
-	{
-	  /* A simpler Chebyshev approximation is close enough for this range:
-	   * 1 + x^2 (CC0 + x^3 * CC1).  */
-	  const double theta2 = theta * theta;
-	  cx = CC0 + theta * theta2 * CC1;
-	  cx = 1.0 + theta2 * cx;
-	  return cx;
-	}
-      else
-	{
-	  /* For small enough |theta|, this is close enough.  */
-	  return 1.0 - abstheta;
-	}
+      x = reduce_fast (x, p, &n);
+
+      /* Setup the signs for sin and cos.  */
+      s = p->sign[n & 3];
+
+      if (n & 2)
+	p = &__sincosf_table[1];
+
+      return sinf_poly (x * s, x * x, p, n ^ 1);
     }
-  else /* |theta| >= Pi/4.  */
+  else if (abstop12 (y) < abstop12 (INFINITY))
     {
-      if (isless (abstheta, 9 * M_PI_4))
-	{
-	  /* There are cases where FE_UPWARD rounding mode can
-	     produce a result of abstheta * inv_PI_4 == 9,
-	     where abstheta < 9pi/4, so the domain for
-	     pio2_table must go to 5 (9 / 2 + 1).  */
-	  unsigned int n = (abstheta * inv_PI_4) + 1;
-	  theta = abstheta - pio2_table[n / 2];
-	  return reduced_cos (theta, n);
-	}
-      else if (isless (abstheta, INFINITY))
-	{
-	  if (abstheta < 0x1p+23)
-	    {
-	      unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
-	      double x = n / 2;
-	      theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
-	      /* Argument reduction needed.  */
-	      return reduced_cos (theta, n);
-	    }
-	  else /* |theta| >= 2^23.  */
-	    {
-	      x = fabsf (x);
-	      int exponent;
-	      GET_FLOAT_WORD (exponent, x);
-	      exponent = (exponent >> FLOAT_EXPONENT_SHIFT)
-			 - FLOAT_EXPONENT_BIAS;
-	      exponent += 3;
-	      exponent /= 28;
-	      double a = invpio4_table[exponent] * x;
-	      double b = invpio4_table[exponent + 1] * x;
-	      double c = invpio4_table[exponent + 2] * x;
-	      double d = invpio4_table[exponent + 3] * x;
-	      uint64_t l = a;
-	      l &= ~0x7;
-	      a -= l;
-	      double e = a + b;
-	      l = e;
-	      e = a - l;
-	      if (l & 1)
-		{
-		  e -= 1.0;
-		  e += b;
-		  e += c;
-		  e += d;
-		  e *= M_PI_4;
-		  return reduced_cos (e, l + 1);
-		}
-	      else
-		{
-		  e += b;
-		  e += c;
-		  e += d;
-		  if (e <= 1.0)
-		    {
-		      e *= M_PI_4;
-		      return reduced_cos (e, l + 1);
-		    }
-		  else
-		    {
-		      l++;
-		      e -= 2.0;
-		      e *= M_PI_4;
-		      return reduced_cos (e, l + 1);
-		    }
-		}
-	    }
-	}
-      else
-	{
-	  int32_t ix;
-	  GET_FLOAT_WORD (ix, abstheta);
-	  /* cos(Inf or NaN) is NaN.  */
-	  if (ix == 0x7f800000) /* Inf.  */
-	    __set_errno (EDOM);
-	  return x - x;
-	}
+      uint32_t xi = asuint (y);
+      int sign = xi >> 31;
+
+      x = reduce_large (xi, &n);
+
+      /* Setup signs for sin and cos - include original sign.  */
+      s = p->sign[(n + sign) & 3];
+
+      if ((n + sign) & 2)
+	p = &__sincosf_table[1];
+
+      return sinf_poly (x * s, x * x, p, n ^ 1);
     }
+  else
+    return __math_invalidf (y);
 }
 
 #ifndef COSF
diff --git a/sysdeps/ieee754/flt-32/s_sincosf.h b/sysdeps/ieee754/flt-32/s_sincosf.h
index d3d7b4d6f3..1dcb04f235 100644
--- a/sysdeps/ieee754/flt-32/s_sincosf.h
+++ b/sysdeps/ieee754/flt-32/s_sincosf.h
@@ -1,5 +1,5 @@
 /* Used by sinf, cosf and sincosf functions.
-   Copyright (C) 2017-2018 Free Software Foundation, Inc.
+   Copyright (C) 2018 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
 
    The GNU C Library is free software; you can redistribute it and/or
@@ -20,145 +20,6 @@
 #include <math.h>
 #include "math_config.h"
 
-/* Chebyshev constants for cos, range -PI/4 - PI/4.  */
-static const double C0 = -0x1.ffffffffe98aep-2;
-static const double C1 =  0x1.55555545c50c7p-5;
-static const double C2 = -0x1.6c16b348b6874p-10;
-static const double C3 =  0x1.a00eb9ac43ccp-16;
-static const double C4 = -0x1.23c97dd8844d7p-22;
-
-/* Chebyshev constants for sin, range -PI/4 - PI/4.  */
-static const double S0 = -0x1.5555555551cd9p-3;
-static const double S1 =  0x1.1111110c2688bp-7;
-static const double S2 = -0x1.a019f8b4bd1f9p-13;
-static const double S3 =  0x1.71d7264e6b5b4p-19;
-static const double S4 = -0x1.a947e1674b58ap-26;
-
-/* Chebyshev constants for sin, range 2^-27 - 2^-5.  */
-static const double SS0 = -0x1.555555543d49dp-3;
-static const double SS1 =  0x1.110f475cec8c5p-7;
-
-/* Chebyshev constants for cos, range 2^-27 - 2^-5.  */
-static const double CC0 = -0x1.fffffff5cc6fdp-2;
-static const double CC1 =  0x1.55514b178dac5p-5;
-
-/* PI/2 with 98 bits of accuracy.  */
-static const double PI_2_hi = 0x1.921fb544p+0;
-static const double PI_2_lo = 0x1.0b4611a626332p-34;
-
-static const double SMALL = 0x1p-50; /* 2^-50.  */
-static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI.  */
-
-#define FLOAT_EXPONENT_SHIFT 23
-#define FLOAT_EXPONENT_BIAS 127
-
-static const double pio2_table[] = {
-  0 * M_PI_2,
-  1 * M_PI_2,
-  2 * M_PI_2,
-  3 * M_PI_2,
-  4 * M_PI_2,
-  5 * M_PI_2
-};
-
-static const double invpio4_table[] = {
-  0x0p+0,
-  0x1.45f306cp+0,
-  0x1.c9c882ap-28,
-  0x1.4fe13a8p-58,
-  0x1.f47d4dp-85,
-  0x1.bb81b6cp-112,
-  0x1.4acc9ep-142,
-  0x1.0e4107cp-169
-};
-
-static const double ones[] = { 1.0, -1.0 };
-
-/* Compute the sine value using Chebyshev polynomials where
-   THETA is the range reduced absolute value of the input
-   and it is less than Pi/4,
-   N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
-   whether a sine or cosine approximation is more accurate and
-   SIGNBIT is used to add the correct sign after the Chebyshev
-   polynomial is computed.  */
-static inline float
-reduced_sin (const double theta, const unsigned int n,
-	 const unsigned int signbit)
-{
-  double sx;
-  const double theta2 = theta * theta;
-  /* We are operating on |x|, so we need to add back the original
-     signbit for sinf.  */
-  double sign;
-  /* Determine positive or negative primary interval.  */
-  sign = ones[((n >> 2) & 1) ^ signbit];
-  /* Are we in the primary interval of sin or cos?  */
-  if ((n & 2) == 0)
-    {
-      /* Here sinf() is calculated using sin Chebyshev polynomial:
-	x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))).  */
-      sx = S3 + theta2 * S4;     /* S3+x^2*S4.  */
-      sx = S2 + theta2 * sx;     /* S2+x^2*(S3+x^2*S4).  */
-      sx = S1 + theta2 * sx;     /* S1+x^2*(S2+x^2*(S3+x^2*S4)).  */
-      sx = S0 + theta2 * sx;     /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))).  */
-      sx = theta + theta * theta2 * sx;
-    }
-  else
-    {
-     /* Here sinf() is calculated using cos Chebyshev polynomial:
-	1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))).  */
-      sx = C3 + theta2 * C4;     /* C3+x^2*C4.  */
-      sx = C2 + theta2 * sx;     /* C2+x^2*(C3+x^2*C4).  */
-      sx = C1 + theta2 * sx;     /* C1+x^2*(C2+x^2*(C3+x^2*C4)).  */
-      sx = C0 + theta2 * sx;     /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))).  */
-      sx = 1.0 + theta2 * sx;
-    }
-
-  /* Add in the signbit and assign the result.  */
-  return sign * sx;
-}
-
-/* Compute the cosine value using Chebyshev polynomials where
-   THETA is the range reduced absolute value of the input
-   and it is less than Pi/4,
-   N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
-   whether a sine or cosine approximation is more accurate and
-   the sign of the result.  */
-static inline float
-reduced_cos (double theta, unsigned int n)
-{
-  double sign, cx;
-  const double theta2 = theta * theta;
-
-  /* Determine positive or negative primary interval.  */
-  n += 2;
-  sign = ones[(n >> 2) & 1];
-
-  /* Are we in the primary interval of sin or cos?  */
-  if ((n & 2) == 0)
-    {
-      /* Here cosf() is calculated using sin Chebyshev polynomial:
-	x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))).  */
-      cx = S3 + theta2 * S4;
-      cx = S2 + theta2 * cx;
-      cx = S1 + theta2 * cx;
-      cx = S0 + theta2 * cx;
-      cx = theta + theta * theta2 * cx;
-    }
-  else
-    {
-     /* Here cosf() is calculated using cos Chebyshev polynomial:
-	1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))).  */
-      cx = C3 + theta2 * C4;
-      cx = C2 + theta2 * cx;
-      cx = C1 + theta2 * cx;
-      cx = C0 + theta2 * cx;
-      cx = 1. + theta2 * cx;
-    }
-  return sign * cx;
-}
-
-
 /* 2PI * 2^-64.  */
 static const double pi63 = 0x1.921FB54442D18p-62;
 /* PI / 4.  */
@@ -217,6 +78,36 @@ sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
   *cosp = c + x6 * c2;
 }
 
+/* Return the sine of inputs X and X2 (X squared) using the polynomial P.
+   N is the quadrant, and if odd the cosine polynomial is used.  */
+static inline float
+sinf_poly (double x, double x2, const sincos_t *p, int n)
+{
+  double x3, x4, x6, x7, s, c, c1, c2, s1;
+
+  if ((n & 1) == 0)
+    {
+      x3 = x * x2;
+      s1 = p->s2 + x2 * p->s3;
+
+      x7 = x3 * x2;
+      s = x + x3 * p->s1;
+
+      return s + x7 * s1;
+    }
+  else
+    {
+      x4 = x2 * x2;
+      c2 = p->c3 + x2 * p->c4;
+      c1 = p->c0 + x2 * p->c1;
+
+      x6 = x4 * x2;
+      c = c1 + x4 * p->c2;
+
+      return c + x6 * c2;
+    }
+}
+
 /* Fast range reduction using single multiply-subtract.  Return the modulo of
    X as a value between -PI/4 and PI/4 and store the quadrant in NP.
    The values for PI/2 and 2/PI are accessed via P.  Since PI/2 as a double
diff --git a/sysdeps/ieee754/flt-32/s_sinf.c b/sysdeps/ieee754/flt-32/s_sinf.c
index 138e318dcc..f6964e6022 100644
--- a/sysdeps/ieee754/flt-32/s_sinf.c
+++ b/sysdeps/ieee754/flt-32/s_sinf.c
@@ -1,5 +1,5 @@
 /* Compute sine of argument.
-   Copyright (C) 2017-2018 Free Software Foundation, Inc.
+   Copyright (C) 2018 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
 
    The GNU C Library is free software; you can redistribute it and/or
@@ -16,10 +16,11 @@
    License along with the GNU C Library; if not, see
    <http://www.gnu.org/licenses/>.  */
 
-#include <errno.h>
+#include <stdint.h>
 #include <math.h>
-#include <math_private.h>
+#include <math-barriers.h>
 #include <libm-alias-float.h>
+#include "math_config.h"
 #include "s_sincosf.h"
 
 #ifndef SINF
@@ -28,127 +29,62 @@
 # define SINF_FUNC SINF
 #endif
 
+/* Fast sinf implementation.  Worst-case ULP is 0.5607, maximum relative
+   error is 0.5303 * 2^-23.  A single-step range reduction is used for
+   small values.  Large inputs have their range reduced using fast integer
+   arithmetic.
+*/
 float
-SINF_FUNC (float x)
+SINF_FUNC (float y)
 {
-  double cx;
-  double theta = x;
-  double abstheta = fabs (theta);
-  /* If |x|< Pi/4.  */
-  if (isless (abstheta, M_PI_4))
+  double x = y;
+  double s;
+  int n;
+  const sincos_t *p = &__sincosf_table[0];
+
+  if (abstop12 (y) < abstop12 (pio4))
+    {
+      s = x * x;
+
+      if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-12f)))
+      {
+	/* Force underflow for tiny y.  */
+	if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-126f)))
+	  math_force_eval ((float)s);
+	return y;
+      }
+
+      return sinf_poly (x, s, p, 0);
+    }
+  else if (__glibc_likely (abstop12 (y) < abstop12 (120.0f)))
     {
-      if (abstheta >= 0x1p-5) /* |x| >= 2^-5.  */
-	{
-	  const double theta2 = theta * theta;
-	  /* Chebyshev polynomial of the form for sin
-	     x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))).  */
-	  cx = S3 + theta2 * S4;
-	  cx = S2 + theta2 * cx;
-	  cx = S1 + theta2 * cx;
-	  cx = S0 + theta2 * cx;
-	  cx = theta + theta * theta2 * cx;
-	  return cx;
-	}
-      else if (abstheta >= 0x1p-27)     /* |x| >= 2^-27.  */
-	{
-	  /* A simpler Chebyshev approximation is close enough for this range:
-	     for sin: x+x^3*(SS0+x^2*SS1).  */
-	  const double theta2 = theta * theta;
-	  cx = SS0 + theta2 * SS1;
-	  cx = theta + theta * theta2 * cx;
-	  return cx;
-	}
-      else
-	{
-	  /* Handle some special cases.  */
-	  if (theta)
-	    return theta - (theta * SMALL);
-	  else
-	    return theta;
-	}
+      x = reduce_fast (x, p, &n);
+
+      /* Setup the signs for sin and cos.  */
+      s = p->sign[n & 3];
+
+      if (n & 2)
+	p = &__sincosf_table[1];
+
+      return sinf_poly (x * s, x * x, p, n);
     }
-  else                          /* |x| >= Pi/4.  */
+  else if (abstop12 (y) < abstop12 (INFINITY))
     {
-      unsigned int signbit = isless (x, 0);
-      if (isless (abstheta, 9 * M_PI_4))        /* |x| < 9*Pi/4.  */
-	{
-	  /* There are cases where FE_UPWARD rounding mode can
-	     produce a result of abstheta * inv_PI_4 == 9,
-	     where abstheta < 9pi/4, so the domain for
-	     pio2_table must go to 5 (9 / 2 + 1).  */
-	  unsigned int n = (abstheta * inv_PI_4) + 1;
-	  theta = abstheta - pio2_table[n / 2];
-	  return reduced_sin (theta, n, signbit);
-	}
-      else if (isless (abstheta, INFINITY))
-	{
-	  if (abstheta < 0x1p+23)     /* |x| < 2^23.  */
-	    {
-	      unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
-	      double x = n / 2;
-	      theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
-	      /* Argument reduction needed.  */
-	      return reduced_sin (theta, n, signbit);
-	    }
-	  else                  /* |x| >= 2^23.  */
-	    {
-	      x = fabsf (x);
-	      int exponent;
-	      GET_FLOAT_WORD (exponent, x);
-	      exponent
-	        = (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
-	      exponent += 3;
-	      exponent /= 28;
-	      double a = invpio4_table[exponent] * x;
-	      double b = invpio4_table[exponent + 1] * x;
-	      double c = invpio4_table[exponent + 2] * x;
-	      double d = invpio4_table[exponent + 3] * x;
-	      uint64_t l = a;
-	      l &= ~0x7;
-	      a -= l;
-	      double e = a + b;
-	      l = e;
-	      e = a - l;
-	      if (l & 1)
-	        {
-	          e -= 1.0;
-	          e += b;
-	          e += c;
-	          e += d;
-	          e *= M_PI_4;
-	          return reduced_sin (e, l + 1, signbit);
-	        }
-	      else
-		{
-		  e += b;
-		  e += c;
-		  e += d;
-		  if (e <= 1.0)
-		    {
-		      e *= M_PI_4;
-		      return reduced_sin (e, l + 1, signbit);
-		    }
-		  else
-		    {
-		      l++;
-		      e -= 2.0;
-		      e *= M_PI_4;
-		      return reduced_sin (e, l + 1, signbit);
-		    }
-		}
-	    }
-	}
-      else
-	{
-	  int32_t ix;
-	  /* High word of x.  */
-	  GET_FLOAT_WORD (ix, abstheta);
-	  /* Sin(Inf or NaN) is NaN.  */
-	  if (ix == 0x7f800000)
-	    __set_errno (EDOM);
-	  return x - x;
-	}
+      uint32_t xi = asuint (y);
+      int sign = xi >> 31;
+
+      x = reduce_large (xi, &n);
+
+      /* Setup signs for sin and cos - include original sign.  */
+      s = p->sign[(n + sign) & 3];
+
+      if ((n + sign) & 2)
+	p = &__sincosf_table[1];
+
+      return sinf_poly (x * s, x * x, p, n);
     }
+  else
+    return __math_invalidf (y);
 }
 
 #ifndef SINF