about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_log1pl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/s_log1pl.c257
1 files changed, 0 insertions, 257 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c b/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
deleted file mode 100644
index f1863fb688..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/s_log1pl.c
+++ /dev/null
@@ -1,257 +0,0 @@
-/*							log1pl.c
- *
- *      Relative error logarithm
- *	Natural logarithm of 1+x, 128-bit long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, log1pl();
- *
- * y = log1pl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of 1+x.
- *
- * The argument 1+x is separated into its exponent and fractional
- * parts.  If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
- *
- * Otherwise, setting  z = 2(w-1)/(w+1),
- *
- *     log(w) = z + z^3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- *                      Relative error:
- * arithmetic   domain     # trials      peak         rms
- *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
- */
-
-/* Copyright 2001 by Stephen L. Moshier
-
-    This library is free software; you can redistribute it and/or
-    modify it under the terms of the GNU Lesser General Public
-    License as published by the Free Software Foundation; either
-    version 2.1 of the License, or (at your option) any later version.
-
-    This library is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-    Lesser General Public License for more details.
-
-    You should have received a copy of the GNU Lesser General Public
-    License along with this library; if not, write to the Free Software
-    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
-
-
-#include "math.h"
-#include "math_private.h"
-#include <math_ldbl_opt.h>
-
-/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
- * 1/sqrt(2) <= 1+x < sqrt(2)
- * Theoretical peak relative error = 5.3e-37,
- * relative peak error spread = 2.3e-14
- */
-static const long double
-  P12 = 1.538612243596254322971797716843006400388E-6L,
-  P11 = 4.998469661968096229986658302195402690910E-1L,
-  P10 = 2.321125933898420063925789532045674660756E1L,
-  P9 = 4.114517881637811823002128927449878962058E2L,
-  P8 = 3.824952356185897735160588078446136783779E3L,
-  P7 = 2.128857716871515081352991964243375186031E4L,
-  P6 = 7.594356839258970405033155585486712125861E4L,
-  P5 = 1.797628303815655343403735250238293741397E5L,
-  P4 = 2.854829159639697837788887080758954924001E5L,
-  P3 = 3.007007295140399532324943111654767187848E5L,
-  P2 = 2.014652742082537582487669938141683759923E5L,
-  P1 = 7.771154681358524243729929227226708890930E4L,
-  P0 = 1.313572404063446165910279910527789794488E4L,
-  /* Q12 = 1.000000000000000000000000000000000000000E0L, */
-  Q11 = 4.839208193348159620282142911143429644326E1L,
-  Q10 = 9.104928120962988414618126155557301584078E2L,
-  Q9 = 9.147150349299596453976674231612674085381E3L,
-  Q8 = 5.605842085972455027590989944010492125825E4L,
-  Q7 = 2.248234257620569139969141618556349415120E5L,
-  Q6 = 6.132189329546557743179177159925690841200E5L,
-  Q5 = 1.158019977462989115839826904108208787040E6L,
-  Q4 = 1.514882452993549494932585972882995548426E6L,
-  Q3 = 1.347518538384329112529391120390701166528E6L,
-  Q2 = 7.777690340007566932935753241556479363645E5L,
-  Q1 = 2.626900195321832660448791748036714883242E5L,
-  Q0 = 3.940717212190338497730839731583397586124E4L;
-
-/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 1.1e-35,
- * relative peak error spread 1.1e-9
- */
-static const long double
-  R5 = -8.828896441624934385266096344596648080902E-1L,
-  R4 = 8.057002716646055371965756206836056074715E1L,
-  R3 = -2.024301798136027039250415126250455056397E3L,
-  R2 = 2.048819892795278657810231591630928516206E4L,
-  R1 = -8.977257995689735303686582344659576526998E4L,
-  R0 = 1.418134209872192732479751274970992665513E5L,
-  /* S6 = 1.000000000000000000000000000000000000000E0L, */
-  S5 = -1.186359407982897997337150403816839480438E2L,
-  S4 = 3.998526750980007367835804959888064681098E3L,
-  S3 = -5.748542087379434595104154610899551484314E4L,
-  S2 = 4.001557694070773974936904547424676279307E5L,
-  S1 = -1.332535117259762928288745111081235577029E6L,
-  S0 = 1.701761051846631278975701529965589676574E6L;
-
-/* C1 + C2 = ln 2 */
-static const long double C1 = 6.93145751953125E-1L;
-static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
-
-static const long double sqrth = 0.7071067811865475244008443621048490392848L;
-/* ln (2^16384 * (1 - 2^-113)) */
-static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;
-static const long double big = 2e300L;
-static const long double zero = 0.0L;
-
-#if 1
-/* Make sure these are prototyped.  */
-long double frexpl (long double, int *);
-long double ldexpl (long double, int);
-#endif
-
-
-long double
-__log1pl (long double xm1)
-{
-  long double x, y, z, r, s;
-  ieee854_long_double_shape_type u;
-  int32_t hx;
-  int e;
-
-  /* Test for NaN or infinity input. */
-  u.value = xm1;
-  hx = u.parts32.w0;
-  if (hx >= 0x7ff00000)
-    return xm1;
-
-  /* log1p(+- 0) = +- 0.  */
-  if (((hx & 0x7fffffff) == 0)
-      && (u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3) == 0)
-    return xm1;
-
-  x = xm1 + 1.0L;
-
-  /* log1p(-1) = -inf */
-  if (x <= 0.0L)
-    {
-      if (x == 0.0L)
-	return (-1.0L / (x - x));
-      else
-	return (zero / (x - x));
-    }
-
-  /* Separate mantissa from exponent.  */
-
-  /* Use frexp used so that denormal numbers will be handled properly.  */
-  x = frexpl (x, &e);
-
-  /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
-     where z = 2(x-1)/x+1).  */
-  if ((e > 2) || (e < -2))
-    {
-      if (x < sqrth)
-	{			/* 2( 2x-1 )/( 2x+1 ) */
-	  e -= 1;
-	  z = x - 0.5L;
-	  y = 0.5L * z + 0.5L;
-	}
-      else
-	{			/*  2 (x-1)/(x+1)   */
-	  z = x - 0.5L;
-	  z -= 0.5L;
-	  y = 0.5L * x + 0.5L;
-	}
-      x = z / y;
-      z = x * x;
-      r = ((((R5 * z
-	      + R4) * z
-	     + R3) * z
-	    + R2) * z
-	   + R1) * z
-	+ R0;
-      s = (((((z
-	       + S5) * z
-	      + S4) * z
-	     + S3) * z
-	    + S2) * z
-	   + S1) * z
-	+ S0;
-      z = x * (z * r / s);
-      z = z + e * C2;
-      z = z + x;
-      z = z + e * C1;
-      return (z);
-    }
-
-
-  /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
-
-  if (x < sqrth)
-    {
-      e -= 1;
-      if (e != 0)
-	x = 2.0L * x - 1.0L;	/*  2x - 1  */
-      else
-	x = xm1;
-    }
-  else
-    {
-      if (e != 0)
-	x = x - 1.0L;
-      else
-	x = xm1;
-    }
-  z = x * x;
-  r = (((((((((((P12 * x
-		 + P11) * x
-		+ P10) * x
-	       + P9) * x
-	      + P8) * x
-	     + P7) * x
-	    + P6) * x
-	   + P5) * x
-	  + P4) * x
-	 + P3) * x
-	+ P2) * x
-       + P1) * x
-    + P0;
-  s = (((((((((((x
-		 + Q11) * x
-		+ Q10) * x
-	       + Q9) * x
-	      + Q8) * x
-	     + Q7) * x
-	    + Q6) * x
-	   + Q5) * x
-	  + Q4) * x
-	 + Q3) * x
-	+ Q2) * x
-       + Q1) * x
-    + Q0;
-  y = x * (z * r / s);
-  y = y + e * C2;
-  z = y - 0.5L * z;
-  z = z + x;
-  z = z + e * C1;
-  return (z);
-}
-
-long_double_symbol (libm, __log1pl, log1pl);