about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/s_expm1l.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/s_expm1l.c160
1 files changed, 0 insertions, 160 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c b/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
deleted file mode 100644
index 4908d4e4f3..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
+++ /dev/null
@@ -1,160 +0,0 @@
-/*							expm1l.c
- *
- *	Exponential function, minus 1
- *      128-bit long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, expm1l();
- *
- * y = expm1l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power, minus one.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- *     x    k  f
- *    e  = 2  e.
- *
- * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
- * in the basic range [-0.5 ln 2, 0.5 ln 2].
- *
- *
- * ACCURACY:
- *
- *                      Relative error:
- * arithmetic   domain     # trials      peak         rms
- *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
- *
- */
-
-/* Copyright 2001 by Stephen L. Moshier
-
-    This library is free software; you can redistribute it and/or
-    modify it under the terms of the GNU Lesser General Public
-    License as published by the Free Software Foundation; either
-    version 2.1 of the License, or (at your option) any later version.
-
-    This library is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-    Lesser General Public License for more details.
-
-    You should have received a copy of the GNU Lesser General Public
-    License along with this library; if not, write to the Free Software
-    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
-
-#include "math.h"
-#include "math_private.h"
-#include <math_ldbl_opt.h>
-
-/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
-   -.5 ln 2  <  x  <  .5 ln 2
-   Theoretical peak relative error = 8.1e-36  */
-
-static const long double
-  P0 = 2.943520915569954073888921213330863757240E8L,
-  P1 = -5.722847283900608941516165725053359168840E7L,
-  P2 = 8.944630806357575461578107295909719817253E6L,
-  P3 = -7.212432713558031519943281748462837065308E5L,
-  P4 = 4.578962475841642634225390068461943438441E4L,
-  P5 = -1.716772506388927649032068540558788106762E3L,
-  P6 = 4.401308817383362136048032038528753151144E1L,
-  P7 = -4.888737542888633647784737721812546636240E-1L,
-  Q0 = 1.766112549341972444333352727998584753865E9L,
-  Q1 = -7.848989743695296475743081255027098295771E8L,
-  Q2 = 1.615869009634292424463780387327037251069E8L,
-  Q3 = -2.019684072836541751428967854947019415698E7L,
-  Q4 = 1.682912729190313538934190635536631941751E6L,
-  Q5 = -9.615511549171441430850103489315371768998E4L,
-  Q6 = 3.697714952261803935521187272204485251835E3L,
-  Q7 = -8.802340681794263968892934703309274564037E1L,
-  /* Q8 = 1.000000000000000000000000000000000000000E0 */
-/* C1 + C2 = ln 2 */
-
-  C1 = 6.93145751953125E-1L,
-  C2 = 1.428606820309417232121458176568075500134E-6L,
-/* ln (2^16384 * (1 - 2^-113)) */
-  maxlog = 1.1356523406294143949491931077970764891253E4L,
-/* ln 2^-114 */
-  minarg = -7.9018778583833765273564461846232128760607E1L, big = 2e307L;
-
-
-long double
-__expm1l (long double x)
-{
-  long double px, qx, xx;
-  int32_t ix, sign;
-  ieee854_long_double_shape_type u;
-  int k;
-
-  /* Detect infinity and NaN.  */
-  u.value = x;
-  ix = u.parts32.w0;
-  sign = ix & 0x80000000;
-  ix &= 0x7fffffff;
-  if (ix >= 0x7ff00000)
-    {
-      /* Infinity. */
-      if (((ix & 0xfffff) | u.parts32.w1 | (u.parts32.w2&0x7fffffff) | u.parts32.w3) == 0)
-	{
-	  if (sign)
-	    return -1.0L;
-	  else
-	    return x;
-	}
-      /* NaN. No invalid exception. */
-      return x;
-    }
-
-  /* expm1(+- 0) = +- 0.  */
-  if ((ix == 0) && (u.parts32.w1 | (u.parts32.w2&0x7fffffff) | u.parts32.w3) == 0)
-    return x;
-
-  /* Overflow.  */
-  if (x > maxlog)
-    return (big * big);
-
-  /* Minimum value.  */
-  if (x < minarg)
-    return (4.0/big - 1.0L);
-
-  /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
-  xx = C1 + C2;			/* ln 2. */
-  px = __floorl (0.5 + x / xx);
-  k = px;
-  /* remainder times ln 2 */
-  x -= px * C1;
-  x -= px * C2;
-
-  /* Approximate exp(remainder ln 2).  */
-  px = (((((((P7 * x
-	      + P6) * x
-	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
-
-  qx = (((((((x
-	      + Q7) * x
-	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
-
-  xx = x * x;
-  qx = x + (0.5 * xx + xx * px / qx);
-
-  /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
-
-  We have qx = exp(remainder ln 2) - 1, so
-  exp(x) - 1 = 2^k (qx + 1) - 1
-             = 2^k qx + 2^k - 1.  */
-
-  px = ldexpl (1.0L, k);
-  x = px * qx + (px - 1.0);
-  return x;
-}
-libm_hidden_def (__expm1l)
-long_double_symbol (libm, __expm1l, expm1l);