diff options
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c b/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c deleted file mode 100644 index 1f533cae42..0000000000 --- a/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c +++ /dev/null @@ -1,109 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001, 2004, 2006 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/*********************************************************************/ -/* MODULE_NAME: uroot.c */ -/* */ -/* FUNCTION: usqrt */ -/* */ -/* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */ -/* uroot.tbl */ -/* */ -/* An ultimate sqrt routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of square */ -/* root of x. */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/*********************************************************************/ - -#include <math_private.h> - -typedef unsigned int int4; -typedef union {int4 i[4]; long double x; double d[2]; } mynumber; - -static const mynumber - t512 = {{0x5ff00000, 0x00000000, 0x00000000, 0x00000000 }}, /* 2^512 */ - tm256 = {{0x2ff00000, 0x00000000, 0x00000000, 0x00000000 }}; /* 2^-256 */ -static const double -two54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */ -twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 */ - -/*********************************************************************/ -/* An ultimate sqrt routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of square */ -/* root of x. */ -/*********************************************************************/ -long double __ieee754_sqrtl(long double x) -{ - static const long double big = 134217728.0, big1 = 134217729.0; - long double t,s,i; - mynumber a,c; - int4 k, l, m; - int n; - double d; - - a.x=x; - k=a.i[0] & 0x7fffffff; - /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ - if (k>0x000fffff && k<0x7ff00000) { - if (x < 0) return (big1-big1)/(big-big); - l = (k&0x001fffff)|0x3fe00000; - if (((a.i[2] & 0x7fffffff) | a.i[3]) != 0) { - n = (int) ((l - k) * 2) >> 21; - m = (a.i[2] >> 20) & 0x7ff; - if (m == 0) { - a.d[1] *= two54; - m = ((a.i[2] >> 20) & 0x7ff) - 54; - } - m += n; - if (m > 0) - a.i[2] = (a.i[2] & 0x800fffff) | (m << 20); - else if (m <= -54) { - a.i[2] &= 0x80000000; - a.i[3] = 0; - } else { - m += 54; - a.i[2] = (a.i[2] & 0x800fffff) | (m << 20); - a.d[1] *= twom54; - } - } - a.i[0] = l; - s = a.x; - d = __ieee754_sqrt (a.d[0]); - c.i[0] = 0x20000000+((k&0x7fe00000)>>1); - c.i[1] = 0; - c.i[2] = 0; - c.i[3] = 0; - i = d; - t = 0.5L * (i + s / i); - i = 0.5L * (t + s / t); - return c.x * i; - } - else { - if (k>=0x7ff00000) { - if (a.i[0] == 0xfff00000 && a.i[1] == 0) - return (big1-big1)/(big-big); /* sqrt (-Inf) = NaN. */ - return x; /* sqrt (NaN) = NaN, sqrt (+Inf) = +Inf. */ - } - if (x == 0) return x; - if (x < 0) return (big1-big1)/(big-big); - return tm256.x*__ieee754_sqrtl(x*t512.x); - } -} |