about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c109
1 files changed, 0 insertions, 109 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c b/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c
deleted file mode 100644
index 1f533cae42..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/e_sqrtl.c
+++ /dev/null
@@ -1,109 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001, 2004, 2006 Free Software Foundation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- */
-/*********************************************************************/
-/* MODULE_NAME: uroot.c                                              */
-/*                                                                   */
-/* FUNCTION:    usqrt                                                */
-/*                                                                   */
-/* FILES NEEDED: dla.h endian.h mydefs.h uroot.h                     */
-/*               uroot.tbl                                           */
-/*                                                                   */
-/* An ultimate sqrt routine. Given an IEEE double machine number x   */
-/* it computes the correctly rounded (to nearest) value of square    */
-/* root of x.                                                        */
-/* Assumption: Machine arithmetic operations are performed in        */
-/* round to nearest mode of IEEE 754 standard.                       */
-/*                                                                   */
-/*********************************************************************/
-
-#include <math_private.h>
-
-typedef unsigned int int4;
-typedef union {int4 i[4]; long double x; double d[2]; } mynumber;
-
-static const  mynumber
-  t512 = {{0x5ff00000, 0x00000000, 0x00000000, 0x00000000 }},  /* 2^512  */
-  tm256 = {{0x2ff00000, 0x00000000, 0x00000000, 0x00000000 }};  /* 2^-256 */
-static const double
-two54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */
-twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 */
-
-/*********************************************************************/
-/* An ultimate sqrt routine. Given an IEEE double machine number x   */
-/* it computes the correctly rounded (to nearest) value of square    */
-/* root of x.                                                        */
-/*********************************************************************/
-long double __ieee754_sqrtl(long double x) 
-{
-  static const long double big = 134217728.0, big1 = 134217729.0;
-  long double t,s,i;
-  mynumber a,c;
-  int4 k, l, m;
-  int n;
-  double d;
-
-  a.x=x;
-  k=a.i[0] & 0x7fffffff;
-  /*----------------- 2^-1022  <= | x |< 2^1024  -----------------*/
-  if (k>0x000fffff && k<0x7ff00000) {
-    if (x < 0) return (big1-big1)/(big-big);
-    l = (k&0x001fffff)|0x3fe00000;
-    if (((a.i[2] & 0x7fffffff) | a.i[3]) != 0) {
-      n = (int) ((l - k) * 2) >> 21;
-      m = (a.i[2] >> 20) & 0x7ff;
-      if (m == 0) {
-	a.d[1] *= two54;
-	m = ((a.i[2] >> 20) & 0x7ff) - 54;
-      }
-      m += n;
-      if (m > 0)
-	a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);
-      else if (m <= -54) {
-	a.i[2] &= 0x80000000;
-	a.i[3] = 0;
-      } else {
-	m += 54;
-	a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);
-	a.d[1] *= twom54;
-      }
-    }
-    a.i[0] = l;
-    s = a.x;
-    d = __ieee754_sqrt (a.d[0]);
-    c.i[0] = 0x20000000+((k&0x7fe00000)>>1);
-    c.i[1] = 0;
-    c.i[2] = 0;
-    c.i[3] = 0;
-    i = d;
-    t = 0.5L * (i + s / i);
-    i = 0.5L * (t + s / t);
-    return c.x * i;
-  }
-  else {
-    if (k>=0x7ff00000) {
-      if (a.i[0] == 0xfff00000 && a.i[1] == 0)
-	return (big1-big1)/(big-big); /* sqrt (-Inf) = NaN.  */
-      return x; /* sqrt (NaN) = NaN, sqrt (+Inf) = +Inf.  */
-    }
-    if (x == 0) return x;
-    if (x < 0) return (big1-big1)/(big-big);
-    return tm256.x*__ieee754_sqrtl(x*t512.x);
-  }
-}