about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/e_powl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_powl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_powl.c441
1 files changed, 0 insertions, 441 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_powl.c b/sysdeps/ieee754/ldbl-128ibm/e_powl.c
deleted file mode 100644
index feeaa8ce21..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/e_powl.c
+++ /dev/null
@@ -1,441 +0,0 @@
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* Expansions and modifications for 128-bit long double are
-   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
-   and are incorporated herein by permission of the author.  The author
-   reserves the right to distribute this material elsewhere under different
-   copying permissions.  These modifications are distributed here under
-   the following terms:
-
-    This library is free software; you can redistribute it and/or
-    modify it under the terms of the GNU Lesser General Public
-    License as published by the Free Software Foundation; either
-    version 2.1 of the License, or (at your option) any later version.
-
-    This library is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-    Lesser General Public License for more details.
-
-    You should have received a copy of the GNU Lesser General Public
-    License along with this library; if not, write to the Free Software
-    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
-
-/* __ieee754_powl(x,y) return x**y
- *
- *		      n
- * Method:  Let x =  2   * (1+f)
- *	1. Compute and return log2(x) in two pieces:
- *		log2(x) = w1 + w2,
- *	   where w1 has 113-53 = 60 bit trailing zeros.
- *	2. Perform y*log2(x) = n+y' by simulating muti-precision
- *	   arithmetic, where |y'|<=0.5.
- *	3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- *	1.  (anything) ** 0  is 1
- *	2.  (anything) ** 1  is itself
- *	3.  (anything) ** NAN is NAN
- *	4.  NAN ** (anything except 0) is NAN
- *	5.  +-(|x| > 1) **  +INF is +INF
- *	6.  +-(|x| > 1) **  -INF is +0
- *	7.  +-(|x| < 1) **  +INF is +0
- *	8.  +-(|x| < 1) **  -INF is +INF
- *	9.  +-1         ** +-INF is NAN
- *	10. +0 ** (+anything except 0, NAN)               is +0
- *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
- *	12. +0 ** (-anything except 0, NAN)               is +INF
- *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
- *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- *	15. +INF ** (+anything except 0,NAN) is +INF
- *	16. +INF ** (-anything except 0,NAN) is +0
- *	17. -INF ** (anything)  = -0 ** (-anything)
- *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- *	19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- */
-
-#include "math.h"
-#include "math_private.h"
-
-static const long double bp[] = {
-  1.0L,
-  1.5L,
-};
-
-/* log_2(1.5) */
-static const long double dp_h[] = {
-  0.0,
-  5.8496250072115607565592654282227158546448E-1L
-};
-
-/* Low part of log_2(1.5) */
-static const long double dp_l[] = {
-  0.0,
-  1.0579781240112554492329533686862998106046E-16L
-};
-
-static const long double zero = 0.0L,
-  one = 1.0L,
-  two = 2.0L,
-  two113 = 1.0384593717069655257060992658440192E34L,
-  huge = 1.0e3000L,
-  tiny = 1.0e-3000L;
-
-/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
-   z = (x-1)/(x+1)
-   1 <= x <= 1.25
-   Peak relative error 2.3e-37 */
-static const long double LN[] =
-{
- -3.0779177200290054398792536829702930623200E1L,
-  6.5135778082209159921251824580292116201640E1L,
- -4.6312921812152436921591152809994014413540E1L,
-  1.2510208195629420304615674658258363295208E1L,
- -9.9266909031921425609179910128531667336670E-1L
-};
-static const long double LD[] =
-{
- -5.129862866715009066465422805058933131960E1L,
-  1.452015077564081884387441590064272782044E2L,
- -1.524043275549860505277434040464085593165E2L,
-  7.236063513651544224319663428634139768808E1L,
- -1.494198912340228235853027849917095580053E1L
-  /* 1.0E0 */
-};
-
-/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
-   0 <= x <= 0.5
-   Peak relative error 5.7e-38  */
-static const long double PN[] =
-{
-  5.081801691915377692446852383385968225675E8L,
-  9.360895299872484512023336636427675327355E6L,
-  4.213701282274196030811629773097579432957E4L,
-  5.201006511142748908655720086041570288182E1L,
-  9.088368420359444263703202925095675982530E-3L,
-};
-static const long double PD[] =
-{
-  3.049081015149226615468111430031590411682E9L,
-  1.069833887183886839966085436512368982758E8L,
-  8.259257717868875207333991924545445705394E5L,
-  1.872583833284143212651746812884298360922E3L,
-  /* 1.0E0 */
-};
-
-static const long double
-  /* ln 2 */
-  lg2 = 6.9314718055994530941723212145817656807550E-1L,
-  lg2_h = 6.9314718055994528622676398299518041312695E-1L,
-  lg2_l = 2.3190468138462996154948554638754786504121E-17L,
-  ovt = 8.0085662595372944372e-0017L,
-  /* 2/(3*log(2)) */
-  cp = 9.6179669392597560490661645400126142495110E-1L,
-  cp_h = 9.6179669392597555432899980587535537779331E-1L,
-  cp_l = 5.0577616648125906047157785230014751039424E-17L;
-
-#ifdef __STDC__
-long double
-__ieee754_powl (long double x, long double y)
-#else
-long double
-__ieee754_powl (x, y)
-     long double x, y;
-#endif
-{
-  long double z, ax, z_h, z_l, p_h, p_l;
-  long double y1, t1, t2, r, s, t, u, v, w;
-  long double s2, s_h, s_l, t_h, t_l;
-  int32_t i, j, k, yisint, n;
-  u_int32_t ix, iy;
-  int32_t hx, hy;
-  ieee854_long_double_shape_type o, p, q;
-
-  p.value = x;
-  hx = p.parts32.w0;
-  ix = hx & 0x7fffffff;
-
-  q.value = y;
-  hy = q.parts32.w0;
-  iy = hy & 0x7fffffff;
-
-
-  /* y==zero: x**0 = 1 */
-  if ((iy | q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
-    return one;
-
-  /* 1.0**y = 1; -1.0**+-Inf = 1 */
-  if (x == one)
-    return one;
-  if (x == -1.0L && iy == 0x7ff00000
-      && (q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
-    return one;
-
-  /* +-NaN return x+y */
-  if ((ix > 0x7ff00000)
-      || ((ix == 0x7ff00000)
-	  && ((p.parts32.w1 | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) != 0))
-      || (iy > 0x7ff00000)
-      || ((iy == 0x7ff00000)
-	  && ((q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) != 0)))
-    return x + y;
-
-  /* determine if y is an odd int when x < 0
-   * yisint = 0       ... y is not an integer
-   * yisint = 1       ... y is an odd int
-   * yisint = 2       ... y is an even int
-   */
-  yisint = 0;
-  if (hx < 0)
-    {
-      if ((q.parts32.w2 & 0x7fffffff) >= 0x43400000)	/* Low part >= 2^53 */
-	yisint = 2;		/* even integer y */
-      else if (iy >= 0x3ff00000)	/* 1.0 */
-	{
-	  if (__floorl (y) == y)
-	    {
-	      z = 0.5 * y;
-	      if (__floorl (z) == z)
-		yisint = 2;
-	      else
-		yisint = 1;
-	    }
-	}
-    }
-
-  /* special value of y */
-  if ((q.parts32.w1 | (q.parts32.w2 & 0x7fffffff) | q.parts32.w3) == 0)
-    {
-      if (iy == 0x7ff00000 && q.parts32.w1 == 0)	/* y is +-inf */
-	{
-	  if (((ix - 0x3ff00000) | p.parts32.w1
-	       | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) == 0)
-	    return y - y;	/* inf**+-1 is NaN */
-	  else if (ix > 0x3ff00000 || fabsl (x) > 1.0L)
-	    /* (|x|>1)**+-inf = inf,0 */
-	    return (hy >= 0) ? y : zero;
-	  else
-	    /* (|x|<1)**-,+inf = inf,0 */
-	    return (hy < 0) ? -y : zero;
-	}
-      if (iy == 0x3ff00000)
-	{			/* y is  +-1 */
-	  if (hy < 0)
-	    return one / x;
-	  else
-	    return x;
-	}
-      if (hy == 0x40000000)
-	return x * x;		/* y is  2 */
-      if (hy == 0x3fe00000)
-	{			/* y is  0.5 */
-	  if (hx >= 0)		/* x >= +0 */
-	    return __ieee754_sqrtl (x);
-	}
-    }
-
-  ax = fabsl (x);
-  /* special value of x */
-  if ((p.parts32.w1 | (p.parts32.w2 & 0x7fffffff) | p.parts32.w3) == 0)
-    {
-      if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000)
-	{
-	  z = ax;		/*x is +-0,+-inf,+-1 */
-	  if (hy < 0)
-	    z = one / z;	/* z = (1/|x|) */
-	  if (hx < 0)
-	    {
-	      if (((ix - 0x3ff00000) | yisint) == 0)
-		{
-		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
-		}
-	      else if (yisint == 1)
-		z = -z;		/* (x<0)**odd = -(|x|**odd) */
-	    }
-	  return z;
-	}
-    }
-
-  /* (x<0)**(non-int) is NaN */
-  if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
-    return (x - x) / (x - x);
-
-  /* |y| is huge.
-     2^-16495 = 1/2 of smallest representable value.
-     If (1 - 1/131072)^y underflows, y > 1.4986e9 */
-  if (iy > 0x41d654b0)
-    {
-      /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
-      if (iy > 0x47d654b0)
-	{
-	  if (ix <= 0x3fefffff)
-	    return (hy < 0) ? huge * huge : tiny * tiny;
-	  if (ix >= 0x3ff00000)
-	    return (hy > 0) ? huge * huge : tiny * tiny;
-	}
-      /* over/underflow if x is not close to one */
-      if (ix < 0x3fefffff)
-	return (hy < 0) ? huge * huge : tiny * tiny;
-      if (ix > 0x3ff00000)
-	return (hy > 0) ? huge * huge : tiny * tiny;
-    }
-
-  n = 0;
-  /* take care subnormal number */
-  if (ix < 0x00100000)
-    {
-      ax *= two113;
-      n -= 113;
-      o.value = ax;
-      ix = o.parts32.w0;
-    }
-  n += ((ix) >> 20) - 0x3ff;
-  j = ix & 0x000fffff;
-  /* determine interval */
-  ix = j | 0x3ff00000;		/* normalize ix */
-  if (j <= 0x39880)
-    k = 0;			/* |x|<sqrt(3/2) */
-  else if (j < 0xbb670)
-    k = 1;			/* |x|<sqrt(3)   */
-  else
-    {
-      k = 0;
-      n += 1;
-      ix -= 0x00100000;
-    }
-
-  o.value = ax;
-  o.value = __scalbnl (o.value, ((int) ((ix - o.parts32.w0) * 2)) >> 21);
-  ax = o.value;
-
-  /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
-  u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
-  v = one / (ax + bp[k]);
-  s = u * v;
-  s_h = s;
-
-  o.value = s_h;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  s_h = o.value;
-  /* t_h=ax+bp[k] High */
-  t_h = ax + bp[k];
-  o.value = t_h;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  t_h = o.value;
-  t_l = ax - (t_h - bp[k]);
-  s_l = v * ((u - s_h * t_h) - s_h * t_l);
-  /* compute log(ax) */
-  s2 = s * s;
-  u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
-  v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
-  r = s2 * s2 * u / v;
-  r += s_l * (s_h + s);
-  s2 = s_h * s_h;
-  t_h = 3.0 + s2 + r;
-  o.value = t_h;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  t_h = o.value;
-  t_l = r - ((t_h - 3.0) - s2);
-  /* u+v = s*(1+...) */
-  u = s_h * t_h;
-  v = s_l * t_h + t_l * s;
-  /* 2/(3log2)*(s+...) */
-  p_h = u + v;
-  o.value = p_h;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  p_h = o.value;
-  p_l = v - (p_h - u);
-  z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
-  z_l = cp_l * p_h + p_l * cp + dp_l[k];
-  /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
-  t = (long double) n;
-  t1 = (((z_h + z_l) + dp_h[k]) + t);
-  o.value = t1;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  t1 = o.value;
-  t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
-
-  /* s (sign of result -ve**odd) = -1 else = 1 */
-  s = one;
-  if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
-    s = -one;			/* (-ve)**(odd int) */
-
-  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
-  y1 = y;
-  o.value = y1;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  y1 = o.value;
-  p_l = (y - y1) * t1 + y * t2;
-  p_h = y1 * t1;
-  z = p_l + p_h;
-  o.value = z;
-  j = o.parts32.w0;
-  if (j >= 0x40d00000) /* z >= 16384 */
-    {
-      /* if z > 16384 */
-      if (((j - 0x40d00000) | o.parts32.w1
-        | (o.parts32.w2 & 0x7fffffff) | o.parts32.w3) != 0)
-	return s * huge * huge;	/* overflow */
-      else
-	{
-	  if (p_l + ovt > z - p_h)
-	    return s * huge * huge;	/* overflow */
-	}
-    }
-  else if ((j & 0x7fffffff) >= 0x40d01b90)	/* z <= -16495 */
-    {
-      /* z < -16495 */
-      if (((j - 0xc0d01bc0) | o.parts32.w1
-         | (o.parts32.w2 & 0x7fffffff) | o.parts32.w3) != 0)
-	return s * tiny * tiny;	/* underflow */
-      else
-	{
-	  if (p_l <= z - p_h)
-	    return s * tiny * tiny;	/* underflow */
-	}
-    }
-  /* compute 2**(p_h+p_l) */
-  i = j & 0x7fffffff;
-  k = (i >> 20) - 0x3ff;
-  n = 0;
-  if (i > 0x3fe00000)
-    {				/* if |z| > 0.5, set n = [z+0.5] */
-      n = __floorl (z + 0.5L);
-      t = n;
-      p_h -= t;
-    }
-  t = p_l + p_h;
-  o.value = t;
-  o.parts32.w3 = 0;
-  o.parts32.w2 &= 0xffff8000;
-  t = o.value;
-  u = t * lg2_h;
-  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
-  z = u + v;
-  w = v - (z - u);
-  /*  exp(z) */
-  t = z * z;
-  u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
-  v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
-  t1 = z - t * u / v;
-  r = (z * t1) / (t1 - two) - (w + z * w);
-  z = one - (r - z);
-  z = __scalbnl (z, n);
-  return s * z;
-}