about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/e_asinl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_asinl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_asinl.c265
1 files changed, 0 insertions, 265 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_asinl.c b/sysdeps/ieee754/ldbl-128ibm/e_asinl.c
deleted file mode 100644
index 3696694f78..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/e_asinl.c
+++ /dev/null
@@ -1,265 +0,0 @@
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-  Long double expansions are
-  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
-  and are incorporated herein by permission of the author.  The author 
-  reserves the right to distribute this material elsewhere under different 
-  copying permissions.  These modifications are distributed here under the 
-  following terms:
-
-    This library is free software; you can redistribute it and/or
-    modify it under the terms of the GNU Lesser General Public
-    License as published by the Free Software Foundation; either
-    version 2.1 of the License, or (at your option) any later version.
-
-    This library is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-    Lesser General Public License for more details.
-
-    You should have received a copy of the GNU Lesser General Public
-    License along with this library; if not, write to the Free Software
-    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
-
-/* __ieee754_asin(x)
- * Method :
- *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
- *	we approximate asin(x) on [0,0.5] by
- *		asin(x) = x + x*x^2*R(x^2)
- *      Between .5 and .625 the approximation is
- *              asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
- *	For x in [0.625,1]
- *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
- *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
- *	then for x>0.98
- *		asin(x) = pi/2 - 2*(s+s*z*R(z))
- *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
- *	For x<=0.98, let pio4_hi = pio2_hi/2, then
- *		f = hi part of s;
- *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
- *	and
- *		asin(x) = pi/2 - 2*(s+s*z*R(z))
- *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
- *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
- *
- * Special cases:
- *	if x is NaN, return x itself;
- *	if |x|>1, return NaN with invalid signal.
- *
- */
-
-
-#include "math.h"
-#include "math_private.h"
-long double sqrtl (long double);
-
-#ifdef __STDC__
-static const long double
-#else
-static long double
-#endif
-  one = 1.0L,
-  huge = 1.0e+300L,
-  pio2_hi = 1.5707963267948966192313216916397514420986L,
-  pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
-  pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
-
-	/* coefficient for R(x^2) */
-
-  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
-     0 <= x <= 0.5
-     peak relative error 1.9e-35  */
-  pS0 = -8.358099012470680544198472400254596543711E2L,
-  pS1 =  3.674973957689619490312782828051860366493E3L,
-  pS2 = -6.730729094812979665807581609853656623219E3L,
-  pS3 =  6.643843795209060298375552684423454077633E3L,
-  pS4 = -3.817341990928606692235481812252049415993E3L,
-  pS5 =  1.284635388402653715636722822195716476156E3L,
-  pS6 = -2.410736125231549204856567737329112037867E2L,
-  pS7 =  2.219191969382402856557594215833622156220E1L,
-  pS8 = -7.249056260830627156600112195061001036533E-1L,
-  pS9 =  1.055923570937755300061509030361395604448E-3L,
-
-  qS0 = -5.014859407482408326519083440151745519205E3L,
-  qS1 =  2.430653047950480068881028451580393430537E4L,
-  qS2 = -4.997904737193653607449250593976069726962E4L,
-  qS3 =  5.675712336110456923807959930107347511086E4L,
-  qS4 = -3.881523118339661268482937768522572588022E4L,
-  qS5 =  1.634202194895541569749717032234510811216E4L,
-  qS6 = -4.151452662440709301601820849901296953752E3L,
-  qS7 =  5.956050864057192019085175976175695342168E2L,
-  qS8 = -4.175375777334867025769346564600396877176E1L,
-  /* 1.000000000000000000000000000000000000000E0 */
-
-  /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
-     -0.0625 <= x <= 0.0625
-     peak relative error 3.3e-35  */
-  rS0 = -5.619049346208901520945464704848780243887E0L,
-  rS1 =  4.460504162777731472539175700169871920352E1L,
-  rS2 = -1.317669505315409261479577040530751477488E2L,
-  rS3 =  1.626532582423661989632442410808596009227E2L,
-  rS4 = -3.144806644195158614904369445440583873264E1L,
-  rS5 = -9.806674443470740708765165604769099559553E1L,
-  rS6 =  5.708468492052010816555762842394927806920E1L,
-  rS7 =  1.396540499232262112248553357962639431922E1L,
-  rS8 = -1.126243289311910363001762058295832610344E1L,
-  rS9 = -4.956179821329901954211277873774472383512E-1L,
-  rS10 =  3.313227657082367169241333738391762525780E-1L,
-
-  sS0 = -4.645814742084009935700221277307007679325E0L,
-  sS1 =  3.879074822457694323970438316317961918430E1L,
-  sS2 = -1.221986588013474694623973554726201001066E2L,
-  sS3 =  1.658821150347718105012079876756201905822E2L,
-  sS4 = -4.804379630977558197953176474426239748977E1L,
-  sS5 = -1.004296417397316948114344573811562952793E2L,
-  sS6 =  7.530281592861320234941101403870010111138E1L,
-  sS7 =  1.270735595411673647119592092304357226607E1L,
-  sS8 = -1.815144839646376500705105967064792930282E1L,
-  sS9 = -7.821597334910963922204235247786840828217E-2L,
-  /*  1.000000000000000000000000000000000000000E0 */
-
- asinr5625 =  5.9740641664535021430381036628424864397707E-1L;
-
-
-
-#ifdef __STDC__
-long double
-__ieee754_asinl (long double x)
-#else
-double
-__ieee754_asinl (x)
-     long double x;
-#endif
-{
-  long double t, w, p, q, c, r, s;
-  int32_t ix, sign, flag;
-  ieee854_long_double_shape_type u;
-
-  flag = 0;
-  u.value = x;
-  sign = u.parts32.w0;
-  ix = sign & 0x7fffffff;
-  u.parts32.w0 = ix;    /* |x| */
-  if (ix >= 0x3ff00000)	/* |x|>= 1 */
-    {
-      if (ix == 0x3ff00000
-	  && (u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3) == 0)
-	/* asin(1)=+-pi/2 with inexact */
-	return x * pio2_hi + x * pio2_lo;
-      return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
-    }
-  else if (ix < 0x3fe00000) /* |x| < 0.5 */
-    {
-      if (ix < 0x3c600000) /* |x| < 2**-57 */
-	{
-	  if (huge + x > one)
-	    return x;		/* return x with inexact if x!=0 */
-	}
-      else
-	{
-	  t = x * x;
-	  /* Mark to use pS, qS later on.  */
-	  flag = 1;
-	}
-    }
-  else if (ix < 0x3fe40000) /* 0.625 */
-    {
-      t = u.value - 0.5625;
-      p = ((((((((((rS10 * t
-		    + rS9) * t
-		   + rS8) * t
-		  + rS7) * t
-		 + rS6) * t
-		+ rS5) * t
-	       + rS4) * t
-	      + rS3) * t
-	     + rS2) * t
-	    + rS1) * t
-	   + rS0) * t;
-
-      q = ((((((((( t
-		    + sS9) * t
-		  + sS8) * t
-		 + sS7) * t
-		+ sS6) * t
-	       + sS5) * t
-	      + sS4) * t
-	     + sS3) * t
-	    + sS2) * t
-	   + sS1) * t
-	+ sS0;
-      t = asinr5625 + p / q;
-      if ((sign & 0x80000000) == 0)
-	return t;
-      else
-	return -t;
-    }
-  else
-    {
-      /* 1 > |x| >= 0.625 */
-      w = one - u.value;
-      t = w * 0.5;
-    }
-
-  p = (((((((((pS9 * t
-	       + pS8) * t
-	      + pS7) * t
-	     + pS6) * t
-	    + pS5) * t
-	   + pS4) * t
-	  + pS3) * t
-	 + pS2) * t
-	+ pS1) * t
-       + pS0) * t;
-
-  q = (((((((( t
-	      + qS8) * t
-	     + qS7) * t
-	    + qS6) * t
-	   + qS5) * t
-	  + qS4) * t
-	 + qS3) * t
-	+ qS2) * t
-       + qS1) * t
-    + qS0;
-
-  if (flag) /* 2^-57 < |x| < 0.5 */
-    {
-      w = p / q;
-      return x + x * w;
-    }
-
-  s = __ieee754_sqrtl (t);
-  if (ix >= 0x3fef3333) /* |x| > 0.975 */
-    {
-      w = p / q;
-      t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
-    }
-  else
-    {
-      u.value = s;
-      u.parts32.w3 = 0;
-      u.parts32.w2 = 0;
-      w = u.value;
-      c = (t - w * w) / (s + w);
-      r = p / q;
-      p = 2.0 * s * r - (pio2_lo - 2.0 * c);
-      q = pio4_hi - 2.0 * w;
-      t = pio4_hi - (p - q);
-    }
-
-  if ((sign & 0x80000000) == 0)
-    return t;
-  else
-    return -t;
-}