about summary refs log tree commit diff
path: root/sysdeps/ieee754/flt-32
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/flt-32')
-rw-r--r--sysdeps/ieee754/flt-32/e_j0f.c26
-rw-r--r--sysdeps/ieee754/flt-32/e_j1f.c30
2 files changed, 28 insertions, 28 deletions
diff --git a/sysdeps/ieee754/flt-32/e_j0f.c b/sysdeps/ieee754/flt-32/e_j0f.c
index eed171cc90..c767318e3a 100644
--- a/sysdeps/ieee754/flt-32/e_j0f.c
+++ b/sysdeps/ieee754/flt-32/e_j0f.c
@@ -8,7 +8,7 @@
  *
  * Developed at SunPro, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -27,9 +27,9 @@ static float pzerof(), qzerof();
 #endif
 
 #ifdef __STDC__
-static const float 
+static const float
 #else
-static float 
+static float
 #endif
 huge 	= 1e30,
 one	= 1.0,
@@ -52,9 +52,9 @@ static float zero = 0.0;
 #endif
 
 #ifdef __STDC__
-	float __ieee754_j0f(float x) 
+	float __ieee754_j0f(float x)
 #else
-	float __ieee754_j0f(x) 
+	float __ieee754_j0f(x)
 	float x;
 #endif
 {
@@ -79,10 +79,10 @@ static float zero = 0.0;
 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
 	 */
-		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(x);
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
 		else {
 		    u = pzerof(x); v = qzerof(x);
-		    z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
+		    z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
 		}
 		return z;
 	}
@@ -121,9 +121,9 @@ v03  =  2.5915085189e-07, /* 0x348b216c */
 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
 
 #ifdef __STDC__
-	float __ieee754_y0f(float x) 
+	float __ieee754_y0f(float x)
 #else
-	float __ieee754_y0f(x) 
+	float __ieee754_y0f(x)
 	float x;
 #endif
 {
@@ -133,7 +133,7 @@ v04  =  4.4111031494e-10; /* 0x2ff280c2 */
 	GET_FLOAT_WORD(hx,x);
         ix = 0x7fffffff&hx;
     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
-	if(ix>=0x7f800000) return  one/(x+x*x); 
+	if(ix>=0x7f800000) return  one/(x+x*x);
         if(ix==0) return -one/zero;
         if(hx<0) return zero/zero;
         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
@@ -161,10 +161,10 @@ v04  =  4.4111031494e-10; /* 0x2ff280c2 */
                     if ((s*c)<zero) cc = z/ss;
                     else            ss = z/cc;
                 }
-                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
                 else {
                     u = pzerof(x); v = qzerof(x);
-                    z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
                 }
                 return z;
 	}
@@ -306,7 +306,7 @@ static float pS2[5] = {
 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
 	return one+ r/s;
 }
-		
+
 
 /* For x >= 8, the asymptotic expansions of qzero is
  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
diff --git a/sysdeps/ieee754/flt-32/e_j1f.c b/sysdeps/ieee754/flt-32/e_j1f.c
index e6f14a16ac..a227bc09f1 100644
--- a/sysdeps/ieee754/flt-32/e_j1f.c
+++ b/sysdeps/ieee754/flt-32/e_j1f.c
@@ -8,7 +8,7 @@
  *
  * Developed at SunPro, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -27,9 +27,9 @@ static float ponef(), qonef();
 #endif
 
 #ifdef __STDC__
-static const float 
+static const float
 #else
-static float 
+static float
 #endif
 huge    = 1e30,
 one	= 1.0,
@@ -53,9 +53,9 @@ static float zero    = 0.0;
 #endif
 
 #ifdef __STDC__
-	float __ieee754_j1f(float x) 
+	float __ieee754_j1f(float x)
 #else
-	float __ieee754_j1f(x) 
+	float __ieee754_j1f(x)
 	float x;
 #endif
 {
@@ -80,10 +80,10 @@ static float zero    = 0.0;
 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
 	 */
-		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(y);
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
 		else {
 		    u = ponef(y); v = qonef(y);
-		    z = invsqrtpi*(u*cc-v*ss)/__sqrtf(y);
+		    z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
 		}
 		if(hx<0) return -z;
 		else  	 return  z;
@@ -122,9 +122,9 @@ static float V0[5] = {
 };
 
 #ifdef __STDC__
-	float __ieee754_y1f(float x) 
+	float __ieee754_y1f(float x)
 #else
-	float __ieee754_y1f(x) 
+	float __ieee754_y1f(x)
 	float x;
 #endif
 {
@@ -134,7 +134,7 @@ static float V0[5] = {
 	GET_FLOAT_WORD(hx,x);
         ix = 0x7fffffff&hx;
     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
-	if(ix>=0x7f800000) return  one/(x+x*x); 
+	if(ix>=0x7f800000) return  one/(x+x*x);
         if(ix==0) return -one/zero;
         if(hx<0) return zero/zero;
         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
@@ -158,16 +158,16 @@ static float V0[5] = {
          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
          * to compute the worse one.
          */
-                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
                 else {
                     u = ponef(x); v = qonef(x);
-                    z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
                 }
                 return z;
-        } 
+        }
         if(ix<=0x24800000) {    /* x < 2**-54 */
             return(-tpi/x);
-        } 
+        }
         z = x*x;
         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
@@ -305,7 +305,7 @@ static float ps2[5] = {
         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
         return one+ r/s;
 }
-		
+
 
 /* For x >= 8, the asymptotic expansions of qone is
  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.