about summary refs log tree commit diff
path: root/sysdeps/ieee754/flt-32/s_sincosf.h
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/flt-32/s_sincosf.h')
-rw-r--r--sysdeps/ieee754/flt-32/s_sincosf.h171
1 files changed, 31 insertions, 140 deletions
diff --git a/sysdeps/ieee754/flt-32/s_sincosf.h b/sysdeps/ieee754/flt-32/s_sincosf.h
index d3d7b4d6f3..1dcb04f235 100644
--- a/sysdeps/ieee754/flt-32/s_sincosf.h
+++ b/sysdeps/ieee754/flt-32/s_sincosf.h
@@ -1,5 +1,5 @@
 /* Used by sinf, cosf and sincosf functions.
-   Copyright (C) 2017-2018 Free Software Foundation, Inc.
+   Copyright (C) 2018 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
 
    The GNU C Library is free software; you can redistribute it and/or
@@ -20,145 +20,6 @@
 #include <math.h>
 #include "math_config.h"
 
-/* Chebyshev constants for cos, range -PI/4 - PI/4.  */
-static const double C0 = -0x1.ffffffffe98aep-2;
-static const double C1 =  0x1.55555545c50c7p-5;
-static const double C2 = -0x1.6c16b348b6874p-10;
-static const double C3 =  0x1.a00eb9ac43ccp-16;
-static const double C4 = -0x1.23c97dd8844d7p-22;
-
-/* Chebyshev constants for sin, range -PI/4 - PI/4.  */
-static const double S0 = -0x1.5555555551cd9p-3;
-static const double S1 =  0x1.1111110c2688bp-7;
-static const double S2 = -0x1.a019f8b4bd1f9p-13;
-static const double S3 =  0x1.71d7264e6b5b4p-19;
-static const double S4 = -0x1.a947e1674b58ap-26;
-
-/* Chebyshev constants for sin, range 2^-27 - 2^-5.  */
-static const double SS0 = -0x1.555555543d49dp-3;
-static const double SS1 =  0x1.110f475cec8c5p-7;
-
-/* Chebyshev constants for cos, range 2^-27 - 2^-5.  */
-static const double CC0 = -0x1.fffffff5cc6fdp-2;
-static const double CC1 =  0x1.55514b178dac5p-5;
-
-/* PI/2 with 98 bits of accuracy.  */
-static const double PI_2_hi = 0x1.921fb544p+0;
-static const double PI_2_lo = 0x1.0b4611a626332p-34;
-
-static const double SMALL = 0x1p-50; /* 2^-50.  */
-static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI.  */
-
-#define FLOAT_EXPONENT_SHIFT 23
-#define FLOAT_EXPONENT_BIAS 127
-
-static const double pio2_table[] = {
-  0 * M_PI_2,
-  1 * M_PI_2,
-  2 * M_PI_2,
-  3 * M_PI_2,
-  4 * M_PI_2,
-  5 * M_PI_2
-};
-
-static const double invpio4_table[] = {
-  0x0p+0,
-  0x1.45f306cp+0,
-  0x1.c9c882ap-28,
-  0x1.4fe13a8p-58,
-  0x1.f47d4dp-85,
-  0x1.bb81b6cp-112,
-  0x1.4acc9ep-142,
-  0x1.0e4107cp-169
-};
-
-static const double ones[] = { 1.0, -1.0 };
-
-/* Compute the sine value using Chebyshev polynomials where
-   THETA is the range reduced absolute value of the input
-   and it is less than Pi/4,
-   N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
-   whether a sine or cosine approximation is more accurate and
-   SIGNBIT is used to add the correct sign after the Chebyshev
-   polynomial is computed.  */
-static inline float
-reduced_sin (const double theta, const unsigned int n,
-	 const unsigned int signbit)
-{
-  double sx;
-  const double theta2 = theta * theta;
-  /* We are operating on |x|, so we need to add back the original
-     signbit for sinf.  */
-  double sign;
-  /* Determine positive or negative primary interval.  */
-  sign = ones[((n >> 2) & 1) ^ signbit];
-  /* Are we in the primary interval of sin or cos?  */
-  if ((n & 2) == 0)
-    {
-      /* Here sinf() is calculated using sin Chebyshev polynomial:
-	x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))).  */
-      sx = S3 + theta2 * S4;     /* S3+x^2*S4.  */
-      sx = S2 + theta2 * sx;     /* S2+x^2*(S3+x^2*S4).  */
-      sx = S1 + theta2 * sx;     /* S1+x^2*(S2+x^2*(S3+x^2*S4)).  */
-      sx = S0 + theta2 * sx;     /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))).  */
-      sx = theta + theta * theta2 * sx;
-    }
-  else
-    {
-     /* Here sinf() is calculated using cos Chebyshev polynomial:
-	1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))).  */
-      sx = C3 + theta2 * C4;     /* C3+x^2*C4.  */
-      sx = C2 + theta2 * sx;     /* C2+x^2*(C3+x^2*C4).  */
-      sx = C1 + theta2 * sx;     /* C1+x^2*(C2+x^2*(C3+x^2*C4)).  */
-      sx = C0 + theta2 * sx;     /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))).  */
-      sx = 1.0 + theta2 * sx;
-    }
-
-  /* Add in the signbit and assign the result.  */
-  return sign * sx;
-}
-
-/* Compute the cosine value using Chebyshev polynomials where
-   THETA is the range reduced absolute value of the input
-   and it is less than Pi/4,
-   N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
-   whether a sine or cosine approximation is more accurate and
-   the sign of the result.  */
-static inline float
-reduced_cos (double theta, unsigned int n)
-{
-  double sign, cx;
-  const double theta2 = theta * theta;
-
-  /* Determine positive or negative primary interval.  */
-  n += 2;
-  sign = ones[(n >> 2) & 1];
-
-  /* Are we in the primary interval of sin or cos?  */
-  if ((n & 2) == 0)
-    {
-      /* Here cosf() is calculated using sin Chebyshev polynomial:
-	x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))).  */
-      cx = S3 + theta2 * S4;
-      cx = S2 + theta2 * cx;
-      cx = S1 + theta2 * cx;
-      cx = S0 + theta2 * cx;
-      cx = theta + theta * theta2 * cx;
-    }
-  else
-    {
-     /* Here cosf() is calculated using cos Chebyshev polynomial:
-	1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))).  */
-      cx = C3 + theta2 * C4;
-      cx = C2 + theta2 * cx;
-      cx = C1 + theta2 * cx;
-      cx = C0 + theta2 * cx;
-      cx = 1. + theta2 * cx;
-    }
-  return sign * cx;
-}
-
-
 /* 2PI * 2^-64.  */
 static const double pi63 = 0x1.921FB54442D18p-62;
 /* PI / 4.  */
@@ -217,6 +78,36 @@ sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
   *cosp = c + x6 * c2;
 }
 
+/* Return the sine of inputs X and X2 (X squared) using the polynomial P.
+   N is the quadrant, and if odd the cosine polynomial is used.  */
+static inline float
+sinf_poly (double x, double x2, const sincos_t *p, int n)
+{
+  double x3, x4, x6, x7, s, c, c1, c2, s1;
+
+  if ((n & 1) == 0)
+    {
+      x3 = x * x2;
+      s1 = p->s2 + x2 * p->s3;
+
+      x7 = x3 * x2;
+      s = x + x3 * p->s1;
+
+      return s + x7 * s1;
+    }
+  else
+    {
+      x4 = x2 * x2;
+      c2 = p->c3 + x2 * p->c4;
+      c1 = p->c0 + x2 * p->c1;
+
+      x6 = x4 * x2;
+      c = c1 + x4 * p->c2;
+
+      return c + x6 * c2;
+    }
+}
+
 /* Fast range reduction using single multiply-subtract.  Return the modulo of
    X as a value between -PI/4 and PI/4 and store the quadrant in NP.
    The values for PI/2 and 2/PI are accessed via P.  Since PI/2 as a double