about summary refs log tree commit diff
path: root/sysdeps/ieee754/flt-32/lgamma_negf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/flt-32/lgamma_negf.c')
-rw-r--r--sysdeps/ieee754/flt-32/lgamma_negf.c288
1 files changed, 288 insertions, 0 deletions
diff --git a/sysdeps/ieee754/flt-32/lgamma_negf.c b/sysdeps/ieee754/flt-32/lgamma_negf.c
new file mode 100644
index 0000000000..ed9659801e
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/lgamma_negf.c
@@ -0,0 +1,288 @@
+/* lgammaf expanding around zeros.
+   Copyright (C) 2015 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#include <float.h>
+#include <math.h>
+#include <math_private.h>
+
+static const float lgamma_zeros[][2] =
+  {
+    { -0x2.74ff94p+0f, 0x1.3fe0f2p-24f },
+    { -0x2.bf682p+0f, -0x1.437b2p-24f },
+    { -0x3.24c1b8p+0f, 0x6.c34cap-28f },
+    { -0x3.f48e2cp+0f, 0x1.707a04p-24f },
+    { -0x4.0a13ap+0f, 0x1.e99aap-24f },
+    { -0x4.fdd5ep+0f, 0x1.64454p-24f },
+    { -0x5.021a98p+0f, 0x2.03d248p-24f },
+    { -0x5.ffa4cp+0f, 0x2.9b82fcp-24f },
+    { -0x6.005ac8p+0f, -0x1.625f24p-24f },
+    { -0x6.fff3p+0f, 0x2.251e44p-24f },
+    { -0x7.000dp+0f, 0x8.48078p-28f },
+    { -0x7.fffe6p+0f, 0x1.fa98c4p-28f },
+    { -0x8.0001ap+0f, -0x1.459fcap-28f },
+    { -0x8.ffffdp+0f, -0x1.c425e8p-24f },
+    { -0x9.00003p+0f, 0x1.c44b82p-24f },
+    { -0xap+0f, 0x4.9f942p-24f },
+    { -0xap+0f, -0x4.9f93b8p-24f },
+    { -0xbp+0f, 0x6.b9916p-28f },
+    { -0xbp+0f, -0x6.b9915p-28f },
+    { -0xcp+0f, 0x8.f76c8p-32f },
+    { -0xcp+0f, -0x8.f76c7p-32f },
+    { -0xdp+0f, 0xb.09231p-36f },
+    { -0xdp+0f, -0xb.09231p-36f },
+    { -0xep+0f, 0xc.9cba5p-40f },
+    { -0xep+0f, -0xc.9cba5p-40f },
+    { -0xfp+0f, 0xd.73f9fp-44f },
+  };
+
+static const float e_hi = 0x2.b7e15p+0f, e_lo = 0x1.628aeep-24f;
+
+/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's
+   approximation to lgamma function.  */
+
+static const float lgamma_coeff[] =
+  {
+    0x1.555556p-4f,
+    -0xb.60b61p-12f,
+    0x3.403404p-12f,
+  };
+
+#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0]))
+
+/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is
+   the integer end-point of the half-integer interval containing x and
+   x0 is the zero of lgamma in that half-integer interval.  Each
+   polynomial is expressed in terms of x-xm, where xm is the midpoint
+   of the interval for which the polynomial applies.  */
+
+static const float poly_coeff[] =
+  {
+    /* Interval [-2.125, -2] (polynomial degree 5).  */
+    -0x1.0b71c6p+0f,
+    -0xc.73a1ep-4f,
+    -0x1.ec8462p-4f,
+    -0xe.37b93p-4f,
+    -0x1.02ed36p-4f,
+    -0xe.cbe26p-4f,
+    /* Interval [-2.25, -2.125] (polynomial degree 5).  */
+    -0xf.29309p-4f,
+    -0xc.a5cfep-4f,
+    0x3.9c93fcp-4f,
+    -0x1.02a2fp+0f,
+    0x9.896bep-4f,
+    -0x1.519704p+0f,
+    /* Interval [-2.375, -2.25] (polynomial degree 5).  */
+    -0xd.7d28dp-4f,
+    -0xe.6964cp-4f,
+    0xb.0d4f1p-4f,
+    -0x1.9240aep+0f,
+    0x1.dadabap+0f,
+    -0x3.1778c4p+0f,
+    /* Interval [-2.5, -2.375] (polynomial degree 6).  */
+    -0xb.74ea2p-4f,
+    -0x1.2a82cp+0f,
+    0x1.880234p+0f,
+    -0x3.320c4p+0f,
+    0x5.572a38p+0f,
+    -0x9.f92bap+0f,
+    0x1.1c347ep+4f,
+    /* Interval [-2.625, -2.5] (polynomial degree 6).  */
+    -0x3.d10108p-4f,
+    0x1.cd5584p+0f,
+    0x3.819c24p+0f,
+    0x6.84cbb8p+0f,
+    0xb.bf269p+0f,
+    0x1.57fb12p+4f,
+    0x2.7b9854p+4f,
+    /* Interval [-2.75, -2.625] (polynomial degree 6).  */
+    -0x6.b5d25p-4f,
+    0x1.28d604p+0f,
+    0x1.db6526p+0f,
+    0x2.e20b38p+0f,
+    0x4.44c378p+0f,
+    0x6.62a08p+0f,
+    0x9.6db3ap+0f,
+    /* Interval [-2.875, -2.75] (polynomial degree 5).  */
+    -0x8.a41b2p-4f,
+    0xc.da87fp-4f,
+    0x1.147312p+0f,
+    0x1.7617dap+0f,
+    0x1.d6c13p+0f,
+    0x2.57a358p+0f,
+    /* Interval [-3, -2.875] (polynomial degree 5).  */
+    -0xa.046d6p-4f,
+    0x9.70b89p-4f,
+    0xa.a89a6p-4f,
+    0xd.2f2d8p-4f,
+    0xd.e32b4p-4f,
+    0xf.fb741p-4f,
+  };
+
+static const size_t poly_deg[] =
+  {
+    5,
+    5,
+    5,
+    6,
+    6,
+    6,
+    5,
+    5,
+  };
+
+static const size_t poly_end[] =
+  {
+    5,
+    11,
+    17,
+    24,
+    31,
+    38,
+    44,
+    50,
+  };
+
+/* Compute sin (pi * X) for -0.25 <= X <= 0.5.  */
+
+static float
+lg_sinpi (float x)
+{
+  if (x <= 0.25f)
+    return __sinf ((float) M_PI * x);
+  else
+    return __cosf ((float) M_PI * (0.5f - x));
+}
+
+/* Compute cos (pi * X) for -0.25 <= X <= 0.5.  */
+
+static float
+lg_cospi (float x)
+{
+  if (x <= 0.25f)
+    return __cosf ((float) M_PI * x);
+  else
+    return __sinf ((float) M_PI * (0.5f - x));
+}
+
+/* Compute cot (pi * X) for -0.25 <= X <= 0.5.  */
+
+static float
+lg_cotpi (float x)
+{
+  return lg_cospi (x) / lg_sinpi (x);
+}
+
+/* Compute lgamma of a negative argument -15 < X < -2, setting
+   *SIGNGAMP accordingly.  */
+
+float
+__lgamma_negf (float x, int *signgamp)
+{
+  /* Determine the half-integer region X lies in, handle exact
+     integers and determine the sign of the result.  */
+  int i = __floorf (-2 * x);
+  if ((i & 1) == 0 && i == -2 * x)
+    return 1.0f / 0.0f;
+  float xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
+  i -= 4;
+  *signgamp = ((i & 2) == 0 ? -1 : 1);
+
+  SET_RESTORE_ROUNDF (FE_TONEAREST);
+
+  /* Expand around the zero X0 = X0_HI + X0_LO.  */
+  float x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
+  float xdiff = x - x0_hi - x0_lo;
+
+  /* For arguments in the range -3 to -2, use polynomial
+     approximations to an adjusted version of the gamma function.  */
+  if (i < 2)
+    {
+      int j = __floorf (-8 * x) - 16;
+      float xm = (-33 - 2 * j) * 0.0625f;
+      float x_adj = x - xm;
+      size_t deg = poly_deg[j];
+      size_t end = poly_end[j];
+      float g = poly_coeff[end];
+      for (size_t j = 1; j <= deg; j++)
+	g = g * x_adj + poly_coeff[end - j];
+      return __log1pf (g * xdiff / (x - xn));
+    }
+
+  /* The result we want is log (sinpi (X0) / sinpi (X))
+     + log (gamma (1 - X0) / gamma (1 - X)).  */
+  float x_idiff = fabsf (xn - x), x0_idiff = fabsf (xn - x0_hi - x0_lo);
+  float log_sinpi_ratio;
+  if (x0_idiff < x_idiff * 0.5f)
+    /* Use log not log1p to avoid inaccuracy from log1p of arguments
+       close to -1.  */
+    log_sinpi_ratio = __ieee754_logf (lg_sinpi (x0_idiff)
+				      / lg_sinpi (x_idiff));
+  else
+    {
+      /* Use log1p not log to avoid inaccuracy from log of arguments
+	 close to 1.  X0DIFF2 has positive sign if X0 is further from
+	 XN than X is from XN, negative sign otherwise.  */
+      float x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5f;
+      float sx0d2 = lg_sinpi (x0diff2);
+      float cx0d2 = lg_cospi (x0diff2);
+      log_sinpi_ratio = __log1pf (2 * sx0d2
+				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
+    }
+
+  float log_gamma_ratio;
+#if FLT_EVAL_METHOD != 0
+  volatile
+#endif
+  float y0_tmp = 1 - x0_hi;
+  float y0 = y0_tmp;
+  float y0_eps = -x0_hi + (1 - y0) - x0_lo;
+#if FLT_EVAL_METHOD != 0
+  volatile
+#endif
+  float y_tmp = 1 - x;
+  float y = y_tmp;
+  float y_eps = -x + (1 - y);
+  /* We now wish to compute LOG_GAMMA_RATIO
+     = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
+     accurately approximates the difference Y0 + Y0_EPS - Y -
+     Y_EPS.  Use Stirling's approximation.  */
+  float log_gamma_high
+    = (xdiff * __log1pf ((y0 - e_hi - e_lo + y0_eps) / e_hi)
+       + (y - 0.5f + y_eps) * __log1pf (xdiff / y));
+  /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
+  float y0r = 1 / y0, yr = 1 / y;
+  float y0r2 = y0r * y0r, yr2 = yr * yr;
+  float rdiff = -xdiff / (y * y0);
+  float bterm[NCOEFF];
+  float dlast = rdiff, elast = rdiff * yr * (yr + y0r);
+  bterm[0] = dlast * lgamma_coeff[0];
+  for (size_t j = 1; j < NCOEFF; j++)
+    {
+      float dnext = dlast * y0r2 + elast;
+      float enext = elast * yr2;
+      bterm[j] = dnext * lgamma_coeff[j];
+      dlast = dnext;
+      elast = enext;
+    }
+  float log_gamma_low = 0;
+  for (size_t j = 0; j < NCOEFF; j++)
+    log_gamma_low += bterm[NCOEFF - 1 - j];
+  log_gamma_ratio = log_gamma_high + log_gamma_low;
+
+  return log_sinpi_ratio + log_gamma_ratio;
+}