diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_lgamma_r.c | 2 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/lgamma_neg.c | 399 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/lgamma_product.c | 82 |
3 files changed, 483 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_lgamma_r.c b/sysdeps/ieee754/dbl-64/e_lgamma_r.c index fc6f594d62..ea8a9b42fb 100644 --- a/sysdeps/ieee754/dbl-64/e_lgamma_r.c +++ b/sysdeps/ieee754/dbl-64/e_lgamma_r.c @@ -226,6 +226,8 @@ __ieee754_lgamma_r(double x, int *signgamp) if(__builtin_expect(ix>=0x43300000, 0)) /* |x|>=2**52, must be -integer */ return x/zero; + if (x < -2.0 && x > -28.0) + return __lgamma_neg (x, signgamp); t = sin_pi(x); if(t==zero) return one/fabsf(t); /* -integer */ nadj = __ieee754_log(pi/fabs(t*x)); diff --git a/sysdeps/ieee754/dbl-64/lgamma_neg.c b/sysdeps/ieee754/dbl-64/lgamma_neg.c new file mode 100644 index 0000000000..8f54a0f98e --- /dev/null +++ b/sysdeps/ieee754/dbl-64/lgamma_neg.c @@ -0,0 +1,399 @@ +/* lgamma expanding around zeros. + Copyright (C) 2015 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#include <float.h> +#include <math.h> +#include <math_private.h> + +static const double lgamma_zeros[][2] = + { + { -0x2.74ff92c01f0d8p+0, -0x2.abec9f315f1ap-56 }, + { -0x2.bf6821437b202p+0, 0x6.866a5b4b9be14p-56 }, + { -0x3.24c1b793cb35ep+0, -0xf.b8be699ad3d98p-56 }, + { -0x3.f48e2a8f85fcap+0, -0x1.70d4561291237p-56 }, + { -0x4.0a139e1665604p+0, 0xf.3c60f4f21e7fp-56 }, + { -0x4.fdd5de9bbabf4p+0, 0xa.ef2f55bf89678p-56 }, + { -0x5.021a95fc2db64p+0, -0x3.2a4c56e595394p-56 }, + { -0x5.ffa4bd647d034p+0, -0x1.7dd4ed62cbd32p-52 }, + { -0x6.005ac9625f234p+0, 0x4.9f83d2692e9c8p-56 }, + { -0x6.fff2fddae1bcp+0, 0xc.29d949a3dc03p-60 }, + { -0x7.000cff7b7f87cp+0, 0x1.20bb7d2324678p-52 }, + { -0x7.fffe5fe05673cp+0, -0x3.ca9e82b522b0cp-56 }, + { -0x8.0001a01459fc8p+0, -0x1.f60cb3cec1cedp-52 }, + { -0x8.ffffd1c425e8p+0, -0xf.fc864e9574928p-56 }, + { -0x9.00002e3bb47d8p+0, -0x6.d6d843fedc35p-56 }, + { -0x9.fffffb606bep+0, 0x2.32f9d51885afap-52 }, + { -0xa.0000049f93bb8p+0, -0x1.927b45d95e154p-52 }, + { -0xa.ffffff9466eap+0, 0xe.4c92532d5243p-56 }, + { -0xb.0000006b9915p+0, -0x3.15d965a6ffea4p-52 }, + { -0xb.fffffff708938p+0, -0x7.387de41acc3d4p-56 }, + { -0xc.00000008f76c8p+0, 0x8.cea983f0fdafp-56 }, + { -0xc.ffffffff4f6ep+0, 0x3.09e80685a0038p-52 }, + { -0xd.00000000b092p+0, -0x3.09c06683dd1bap-52 }, + { -0xd.fffffffff3638p+0, 0x3.a5461e7b5c1f6p-52 }, + { -0xe.000000000c9c8p+0, -0x3.a545e94e75ec6p-52 }, + { -0xe.ffffffffff29p+0, 0x3.f9f399fb10cfcp-52 }, + { -0xf.0000000000d7p+0, -0x3.f9f399bd0e42p-52 }, + { -0xf.fffffffffff28p+0, -0xc.060c6621f513p-56 }, + { -0x1.000000000000dp+4, -0x7.3f9f399da1424p-52 }, + { -0x1.0ffffffffffffp+4, -0x3.569c47e7a93e2p-52 }, + { -0x1.1000000000001p+4, 0x3.569c47e7a9778p-52 }, + { -0x1.2p+4, 0xb.413c31dcbecdp-56 }, + { -0x1.2p+4, -0xb.413c31dcbeca8p-56 }, + { -0x1.3p+4, 0x9.7a4da340a0ab8p-60 }, + { -0x1.3p+4, -0x9.7a4da340a0ab8p-60 }, + { -0x1.4p+4, 0x7.950ae90080894p-64 }, + { -0x1.4p+4, -0x7.950ae90080894p-64 }, + { -0x1.5p+4, 0x5.c6e3bdb73d5c8p-68 }, + { -0x1.5p+4, -0x5.c6e3bdb73d5c8p-68 }, + { -0x1.6p+4, 0x4.338e5b6dfe14cp-72 }, + { -0x1.6p+4, -0x4.338e5b6dfe14cp-72 }, + { -0x1.7p+4, 0x2.ec368262c7034p-76 }, + { -0x1.7p+4, -0x2.ec368262c7034p-76 }, + { -0x1.8p+4, 0x1.f2cf01972f578p-80 }, + { -0x1.8p+4, -0x1.f2cf01972f578p-80 }, + { -0x1.9p+4, 0x1.3f3ccdd165fa9p-84 }, + { -0x1.9p+4, -0x1.3f3ccdd165fa9p-84 }, + { -0x1.ap+4, 0xc.4742fe35272dp-92 }, + { -0x1.ap+4, -0xc.4742fe35272dp-92 }, + { -0x1.bp+4, 0x7.46ac70b733a8cp-96 }, + { -0x1.bp+4, -0x7.46ac70b733a8cp-96 }, + { -0x1.cp+4, 0x4.2862898d42174p-100 }, + }; + +static const double e_hi = 0x2.b7e151628aed2p+0, e_lo = 0xa.6abf7158809dp-56; + +/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's + approximation to lgamma function. */ + +static const double lgamma_coeff[] = + { + 0x1.5555555555555p-4, + -0xb.60b60b60b60b8p-12, + 0x3.4034034034034p-12, + -0x2.7027027027028p-12, + 0x3.72a3c5631fe46p-12, + -0x7.daac36664f1f4p-12, + 0x1.a41a41a41a41ap-8, + -0x7.90a1b2c3d4e6p-8, + 0x2.dfd2c703c0dp-4, + -0x1.6476701181f3ap+0, + 0xd.672219167003p+0, + -0x9.cd9292e6660d8p+4, + }; + +#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) + +/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is + the integer end-point of the half-integer interval containing x and + x0 is the zero of lgamma in that half-integer interval. Each + polynomial is expressed in terms of x-xm, where xm is the midpoint + of the interval for which the polynomial applies. */ + +static const double poly_coeff[] = + { + /* Interval [-2.125, -2] (polynomial degree 10). */ + -0x1.0b71c5c54d42fp+0, + -0xc.73a1dc05f3758p-4, + -0x1.ec84140851911p-4, + -0xe.37c9da23847e8p-4, + -0x1.03cd87cdc0ac6p-4, + -0xe.ae9aedce12eep-4, + 0x9.b11a1780cfd48p-8, + -0xe.f25fc460bdebp-4, + 0x2.6e984c61ca912p-4, + -0xf.83fea1c6d35p-4, + 0x4.760c8c8909758p-4, + /* Interval [-2.25, -2.125] (polynomial degree 11). */ + -0xf.2930890d7d678p-4, + -0xc.a5cfde054eaa8p-4, + 0x3.9c9e0fdebd99cp-4, + -0x1.02a5ad35619d9p+0, + 0x9.6e9b1167c164p-4, + -0x1.4d8332eba090ap+0, + 0x1.1c0c94b1b2b6p+0, + -0x1.c9a70d138c74ep+0, + 0x1.d7d9cf1d4c196p+0, + -0x2.91fbf4cd6abacp+0, + 0x2.f6751f74b8ff8p+0, + -0x3.e1bb7b09e3e76p+0, + /* Interval [-2.375, -2.25] (polynomial degree 12). */ + -0xd.7d28d505d618p-4, + -0xe.69649a3040958p-4, + 0xb.0d74a2827cd6p-4, + -0x1.924b09228a86ep+0, + 0x1.d49b12bcf6175p+0, + -0x3.0898bb530d314p+0, + 0x4.207a6be8fda4cp+0, + -0x6.39eef56d4e9p+0, + 0x8.e2e42acbccec8p+0, + -0xd.0d91c1e596a68p+0, + 0x1.2e20d7099c585p+4, + -0x1.c4eb6691b4ca9p+4, + 0x2.96a1a11fd85fep+4, + /* Interval [-2.5, -2.375] (polynomial degree 13). */ + -0xb.74ea1bcfff948p-4, + -0x1.2a82bd590c376p+0, + 0x1.88020f828b81p+0, + -0x3.32279f040d7aep+0, + 0x5.57ac8252ce868p+0, + -0x9.c2aedd093125p+0, + 0x1.12c132716e94cp+4, + -0x1.ea94dfa5c0a6dp+4, + 0x3.66b61abfe858cp+4, + -0x6.0cfceb62a26e4p+4, + 0xa.beeba09403bd8p+4, + -0x1.3188d9b1b288cp+8, + 0x2.37f774dd14c44p+8, + -0x3.fdf0a64cd7136p+8, + /* Interval [-2.625, -2.5] (polynomial degree 13). */ + -0x3.d10108c27ebbp-4, + 0x1.cd557caff7d2fp+0, + 0x3.819b4856d36cep+0, + 0x6.8505cbacfc42p+0, + 0xb.c1b2e6567a4dp+0, + 0x1.50a53a3ce6c73p+4, + 0x2.57adffbb1ec0cp+4, + 0x4.2b15549cf400cp+4, + 0x7.698cfd82b3e18p+4, + 0xd.2decde217755p+4, + 0x1.7699a624d07b9p+8, + 0x2.98ecf617abbfcp+8, + 0x4.d5244d44d60b4p+8, + 0x8.e962bf7395988p+8, + /* Interval [-2.75, -2.625] (polynomial degree 12). */ + -0x6.b5d252a56e8a8p-4, + 0x1.28d60383da3a6p+0, + 0x1.db6513ada89bep+0, + 0x2.e217118fa8c02p+0, + 0x4.450112c651348p+0, + 0x6.4af990f589b8cp+0, + 0x9.2db5963d7a238p+0, + 0xd.62c03647da19p+0, + 0x1.379f81f6416afp+4, + 0x1.c5618b4fdb96p+4, + 0x2.9342d0af2ac4ep+4, + 0x3.d9cdf56d2b186p+4, + 0x5.ab9f91d5a27a4p+4, + /* Interval [-2.875, -2.75] (polynomial degree 11). */ + -0x8.a41b1e4f36ff8p-4, + 0xc.da87d3b69dbe8p-4, + 0x1.1474ad5c36709p+0, + 0x1.761ecb90c8c5cp+0, + 0x1.d279bff588826p+0, + 0x2.4e5d003fb36a8p+0, + 0x2.d575575566842p+0, + 0x3.85152b0d17756p+0, + 0x4.5213d921ca13p+0, + 0x5.55da7dfcf69c4p+0, + 0x6.acef729b9404p+0, + 0x8.483cc21dd0668p+0, + /* Interval [-3, -2.875] (polynomial degree 11). */ + -0xa.046d667e468f8p-4, + 0x9.70b88dcc006cp-4, + 0xa.a8a39421c94dp-4, + 0xd.2f4d1363f98ep-4, + 0xd.ca9aa19975b7p-4, + 0xf.cf09c2f54404p-4, + 0x1.04b1365a9adfcp+0, + 0x1.22b54ef213798p+0, + 0x1.2c52c25206bf5p+0, + 0x1.4aa3d798aace4p+0, + 0x1.5c3f278b504e3p+0, + 0x1.7e08292cc347bp+0, + }; + +static const size_t poly_deg[] = + { + 10, + 11, + 12, + 13, + 13, + 12, + 11, + 11, + }; + +static const size_t poly_end[] = + { + 10, + 22, + 35, + 49, + 63, + 76, + 88, + 100, + }; + +/* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ + +static double +lg_sinpi (double x) +{ + if (x <= 0.25) + return __sin (M_PI * x); + else + return __cos (M_PI * (0.5 - x)); +} + +/* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ + +static double +lg_cospi (double x) +{ + if (x <= 0.25) + return __cos (M_PI * x); + else + return __sin (M_PI * (0.5 - x)); +} + +/* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ + +static double +lg_cotpi (double x) +{ + return lg_cospi (x) / lg_sinpi (x); +} + +/* Compute lgamma of a negative argument -28 < X < -2, setting + *SIGNGAMP accordingly. */ + +double +__lgamma_neg (double x, int *signgamp) +{ + /* Determine the half-integer region X lies in, handle exact + integers and determine the sign of the result. */ + int i = __floor (-2 * x); + if ((i & 1) == 0 && i == -2 * x) + return 1.0 / 0.0; + double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); + i -= 4; + *signgamp = ((i & 2) == 0 ? -1 : 1); + + SET_RESTORE_ROUND (FE_TONEAREST); + + /* Expand around the zero X0 = X0_HI + X0_LO. */ + double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; + double xdiff = x - x0_hi - x0_lo; + + /* For arguments in the range -3 to -2, use polynomial + approximations to an adjusted version of the gamma function. */ + if (i < 2) + { + int j = __floor (-8 * x) - 16; + double xm = (-33 - 2 * j) * 0.0625; + double x_adj = x - xm; + size_t deg = poly_deg[j]; + size_t end = poly_end[j]; + double g = poly_coeff[end]; + for (size_t j = 1; j <= deg; j++) + g = g * x_adj + poly_coeff[end - j]; + return __log1p (g * xdiff / (x - xn)); + } + + /* The result we want is log (sinpi (X0) / sinpi (X)) + + log (gamma (1 - X0) / gamma (1 - X)). */ + double x_idiff = fabs (xn - x), x0_idiff = fabs (xn - x0_hi - x0_lo); + double log_sinpi_ratio; + if (x0_idiff < x_idiff * 0.5) + /* Use log not log1p to avoid inaccuracy from log1p of arguments + close to -1. */ + log_sinpi_ratio = __ieee754_log (lg_sinpi (x0_idiff) + / lg_sinpi (x_idiff)); + else + { + /* Use log1p not log to avoid inaccuracy from log of arguments + close to 1. X0DIFF2 has positive sign if X0 is further from + XN than X is from XN, negative sign otherwise. */ + double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5; + double sx0d2 = lg_sinpi (x0diff2); + double cx0d2 = lg_cospi (x0diff2); + log_sinpi_ratio = __log1p (2 * sx0d2 + * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); + } + + double log_gamma_ratio; +#if FLT_EVAL_METHOD != 0 + volatile +#endif + double y0_tmp = 1 - x0_hi; + double y0 = y0_tmp; + double y0_eps = -x0_hi + (1 - y0) - x0_lo; +#if FLT_EVAL_METHOD != 0 + volatile +#endif + double y_tmp = 1 - x; + double y = y_tmp; + double y_eps = -x + (1 - y); + /* We now wish to compute LOG_GAMMA_RATIO + = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF + accurately approximates the difference Y0 + Y0_EPS - Y - + Y_EPS. Use Stirling's approximation. First, we may need to + adjust into the range where Stirling's approximation is + sufficiently accurate. */ + double log_gamma_adj = 0; + if (i < 6) + { + int n_up = (7 - i) / 2; + double ny0, ny0_eps, ny, ny_eps; +#if FLT_EVAL_METHOD != 0 + volatile +#endif + double y0_tmp = y0 + n_up; + ny0 = y0_tmp; + ny0_eps = y0 - (ny0 - n_up) + y0_eps; + y0 = ny0; + y0_eps = ny0_eps; +#if FLT_EVAL_METHOD != 0 + volatile +#endif + double y_tmp = y + n_up; + ny = y_tmp; + ny_eps = y - (ny - n_up) + y_eps; + y = ny; + y_eps = ny_eps; + double prodm1 = __lgamma_product (xdiff, y - n_up, y_eps, n_up); + log_gamma_adj = -__log1p (prodm1); + } + double log_gamma_high + = (xdiff * __log1p ((y0 - e_hi - e_lo + y0_eps) / e_hi) + + (y - 0.5 + y_eps) * __log1p (xdiff / y) + log_gamma_adj); + /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ + double y0r = 1 / y0, yr = 1 / y; + double y0r2 = y0r * y0r, yr2 = yr * yr; + double rdiff = -xdiff / (y * y0); + double bterm[NCOEFF]; + double dlast = rdiff, elast = rdiff * yr * (yr + y0r); + bterm[0] = dlast * lgamma_coeff[0]; + for (size_t j = 1; j < NCOEFF; j++) + { + double dnext = dlast * y0r2 + elast; + double enext = elast * yr2; + bterm[j] = dnext * lgamma_coeff[j]; + dlast = dnext; + elast = enext; + } + double log_gamma_low = 0; + for (size_t j = 0; j < NCOEFF; j++) + log_gamma_low += bterm[NCOEFF - 1 - j]; + log_gamma_ratio = log_gamma_high + log_gamma_low; + + return log_sinpi_ratio + log_gamma_ratio; +} diff --git a/sysdeps/ieee754/dbl-64/lgamma_product.c b/sysdeps/ieee754/dbl-64/lgamma_product.c new file mode 100644 index 0000000000..8f877a8069 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/lgamma_product.c @@ -0,0 +1,82 @@ +/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), .... + Copyright (C) 2015 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#include <math.h> +#include <math_private.h> +#include <float.h> + +/* Calculate X * Y exactly and store the result in *HI + *LO. It is + given that the values are small enough that no overflow occurs and + large enough (or zero) that no underflow occurs. */ + +static void +mul_split (double *hi, double *lo, double x, double y) +{ +#ifdef __FP_FAST_FMA + /* Fast built-in fused multiply-add. */ + *hi = x * y; + *lo = __builtin_fma (x, y, -*hi); +#elif defined FP_FAST_FMA + /* Fast library fused multiply-add, compiler before GCC 4.6. */ + *hi = x * y; + *lo = __fma (x, y, -*hi); +#else + /* Apply Dekker's algorithm. */ + *hi = x * y; +# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1) + double x1 = x * C; + double y1 = y * C; +# undef C + x1 = (x - x1) + x1; + y1 = (y - y1) + y1; + double x2 = x - x1; + double y2 = y - y1; + *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2; +#endif +} + +/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + + 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that + all the values X + 1, ..., X + N - 1 are exactly representable, and + X_EPS / X is small enough that factors quadratic in it can be + neglected. */ + +double +__lgamma_product (double t, double x, double x_eps, int n) +{ + double ret = 0, ret_eps = 0; + for (int i = 0; i < n; i++) + { + double xi = x + i; + double quot = t / xi; + double mhi, mlo; + mul_split (&mhi, &mlo, quot, xi); + double quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi); + /* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */ + double rhi, rlo; + mul_split (&rhi, &rlo, ret, quot); + double rpq = ret + quot; + double rpq_eps = (ret - rpq) + quot; + double nret = rpq + rhi; + double nret_eps = (rpq - nret) + rhi; + ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot + + quot_lo + quot_lo * (ret + ret_eps)); + ret = nret; + } + return ret + ret_eps; +} |