about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/sincos32.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/sincos32.c')
-rw-r--r--sysdeps/ieee754/dbl-64/sincos32.c307
1 files changed, 0 insertions, 307 deletions
diff --git a/sysdeps/ieee754/dbl-64/sincos32.c b/sysdeps/ieee754/dbl-64/sincos32.c
deleted file mode 100644
index 44a313ad76..0000000000
--- a/sysdeps/ieee754/dbl-64/sincos32.c
+++ /dev/null
@@ -1,307 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2021 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <https://www.gnu.org/licenses/>.
- */
-/****************************************************************/
-/*  MODULE_NAME: sincos32.c                                     */
-/*                                                              */
-/*  FUNCTIONS: ss32                                             */
-/*             cc32                                             */
-/*             c32                                              */
-/*             sin32                                            */
-/*             cos32                                            */
-/*             mpsin                                            */
-/*             mpcos                                            */
-/*             mpranred                                         */
-/*             mpsin1                                           */
-/*             mpcos1                                           */
-/*                                                              */
-/* FILES NEEDED: endian.h mpa.h sincos32.h                      */
-/*               mpa.c                                          */
-/*                                                              */
-/* Multi Precision sin() and cos() function with p=32  for sin()*/
-/* cos() arcsin() and arccos() routines                         */
-/* In addition mpranred() routine  performs range  reduction of */
-/* a double number x into multi precision number   y,           */
-/* such that y=x-n*pi/2, abs(y)<pi/4,  n=0,+-1,+-2,....         */
-/****************************************************************/
-#include "endian.h"
-#include "mpa.h"
-#include "sincos32.h"
-#include <math.h>
-#include <math_private.h>
-#include <stap-probe.h>
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-/* Compute Multi-Precision sin() function for given p.  Receive Multi Precision
-   number x and result stored at y.  */
-static void
-SECTION
-ss32 (mp_no *x, mp_no *y, int p)
-{
-  int i;
-  double a;
-  mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}};
-  for (i = 1; i <= p; i++)
-    mpk.d[i] = 0;
-
-  __sqr (x, &x2, p);
-  __cpy (&oofac27, &gor, p);
-  __cpy (&gor, &sum, p);
-  for (a = 27.0; a > 1.0; a -= 2.0)
-    {
-      mpk.d[1] = a * (a - 1.0);
-      __mul (&gor, &mpk, &mpt1, p);
-      __cpy (&mpt1, &gor, p);
-      __mul (&x2, &sum, &mpt1, p);
-      __sub (&gor, &mpt1, &sum, p);
-    }
-  __mul (x, &sum, y, p);
-}
-
-/* Compute Multi-Precision cos() function for given p. Receive Multi Precision
-   number x and result stored at y.  */
-static void
-SECTION
-cc32 (mp_no *x, mp_no *y, int p)
-{
-  int i;
-  double a;
-  mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}};
-  for (i = 1; i <= p; i++)
-    mpk.d[i] = 0;
-
-  __sqr (x, &x2, p);
-  mpk.d[1] = 27.0;
-  __mul (&oofac27, &mpk, &gor, p);
-  __cpy (&gor, &sum, p);
-  for (a = 26.0; a > 2.0; a -= 2.0)
-    {
-      mpk.d[1] = a * (a - 1.0);
-      __mul (&gor, &mpk, &mpt1, p);
-      __cpy (&mpt1, &gor, p);
-      __mul (&x2, &sum, &mpt1, p);
-      __sub (&gor, &mpt1, &sum, p);
-    }
-  __mul (&x2, &sum, y, p);
-}
-
-/* Compute both sin(x), cos(x) as Multi precision numbers.  */
-void
-SECTION
-__c32 (mp_no *x, mp_no *y, mp_no *z, int p)
-{
-  mp_no u, t, t1, t2, c, s;
-  int i;
-  __cpy (x, &u, p);
-  u.e = u.e - 1;
-  cc32 (&u, &c, p);
-  ss32 (&u, &s, p);
-  for (i = 0; i < 24; i++)
-    {
-      __mul (&c, &s, &t, p);
-      __sub (&s, &t, &t1, p);
-      __add (&t1, &t1, &s, p);
-      __sub (&__mptwo, &c, &t1, p);
-      __mul (&t1, &c, &t2, p);
-      __add (&t2, &t2, &c, p);
-    }
-  __sub (&__mpone, &c, y, p);
-  __cpy (&s, z, p);
-}
-
-/* Compute sin() of double-length number (X + DX) as Multi Precision number and
-   return result as double.  If REDUCE_RANGE is true, X is assumed to be the
-   original input and DX is ignored.  */
-double
-SECTION
-__mpsin (double x, double dx, bool reduce_range)
-{
-  double y;
-  mp_no a, b, c, s;
-  int n;
-  int p = 32;
-
-  if (reduce_range)
-    {
-      n = __mpranred (x, &a, p);	/* n is 0, 1, 2 or 3.  */
-      __c32 (&a, &c, &s, p);
-    }
-  else
-    {
-      n = -1;
-      __dbl_mp (x, &b, p);
-      __dbl_mp (dx, &c, p);
-      __add (&b, &c, &a, p);
-      if (x > 0.8)
-        {
-          __sub (&hp, &a, &b, p);
-          __c32 (&b, &s, &c, p);
-        }
-      else
-        __c32 (&a, &c, &s, p);	/* b = sin(x+dx)  */
-    }
-
-  /* Convert result based on which quarter of unit circle y is in.  */
-  switch (n)
-    {
-    case 1:
-      __mp_dbl (&c, &y, p);
-      break;
-
-    case 3:
-      __mp_dbl (&c, &y, p);
-      y = -y;
-      break;
-
-    case 2:
-      __mp_dbl (&s, &y, p);
-      y = -y;
-      break;
-
-    /* Quadrant not set, so the result must be sin (X + DX), which is also in
-       S.  */
-    case 0:
-    default:
-      __mp_dbl (&s, &y, p);
-    }
-  LIBC_PROBE (slowsin, 3, &x, &dx, &y);
-  return y;
-}
-
-/* Compute cos() of double-length number (X + DX) as Multi Precision number and
-   return result as double.  If REDUCE_RANGE is true, X is assumed to be the
-   original input and DX is ignored.  */
-double
-SECTION
-__mpcos (double x, double dx, bool reduce_range)
-{
-  double y;
-  mp_no a, b, c, s;
-  int n;
-  int p = 32;
-
-  if (reduce_range)
-    {
-      n = __mpranred (x, &a, p);	/* n is 0, 1, 2 or 3.  */
-      __c32 (&a, &c, &s, p);
-    }
-  else
-    {
-      n = -1;
-      __dbl_mp (x, &b, p);
-      __dbl_mp (dx, &c, p);
-      __add (&b, &c, &a, p);
-      if (x > 0.8)
-        {
-          __sub (&hp, &a, &b, p);
-          __c32 (&b, &s, &c, p);
-        }
-      else
-        __c32 (&a, &c, &s, p);	/* a = cos(x+dx)     */
-    }
-
-  /* Convert result based on which quarter of unit circle y is in.  */
-  switch (n)
-    {
-    case 1:
-      __mp_dbl (&s, &y, p);
-      y = -y;
-      break;
-
-    case 3:
-      __mp_dbl (&s, &y, p);
-      break;
-
-    case 2:
-      __mp_dbl (&c, &y, p);
-      y = -y;
-      break;
-
-    /* Quadrant not set, so the result must be cos (X + DX), which is also
-       stored in C.  */
-    case 0:
-    default:
-      __mp_dbl (&c, &y, p);
-    }
-  LIBC_PROBE (slowcos, 3, &x, &dx, &y);
-  return y;
-}
-
-/* Perform range reduction of a double number x into multi precision number y,
-   such that y = x - n * pi / 2, abs (y) < pi / 4, n = 0, +-1, +-2, ...
-   Return int which indicates in which quarter of circle x is.  */
-int
-SECTION
-__mpranred (double x, mp_no *y, int p)
-{
-  number v;
-  double t, xn;
-  int i, k, n;
-  mp_no a, b, c;
-
-  if (fabs (x) < 2.8e14)
-    {
-      t = (x * hpinv.d + toint.d);
-      xn = t - toint.d;
-      v.d = t;
-      n = v.i[LOW_HALF] & 3;
-      __dbl_mp (xn, &a, p);
-      __mul (&a, &hp, &b, p);
-      __dbl_mp (x, &c, p);
-      __sub (&c, &b, y, p);
-      return n;
-    }
-  else
-    {
-      /* If x is very big more precision required.  */
-      __dbl_mp (x, &a, p);
-      a.d[0] = 1.0;
-      k = a.e - 5;
-      if (k < 0)
-	k = 0;
-      b.e = -k;
-      b.d[0] = 1.0;
-      for (i = 0; i < p; i++)
-	b.d[i + 1] = toverp[i + k];
-      __mul (&a, &b, &c, p);
-      t = c.d[c.e];
-      for (i = 1; i <= p - c.e; i++)
-	c.d[i] = c.d[i + c.e];
-      for (i = p + 1 - c.e; i <= p; i++)
-	c.d[i] = 0;
-      c.e = 0;
-      if (c.d[1] >= HALFRAD)
-	{
-	  t += 1.0;
-	  __sub (&c, &__mpone, &b, p);
-	  __mul (&b, &hp, y, p);
-	}
-      else
-	__mul (&c, &hp, y, p);
-      n = (int) t;
-      if (x < 0)
-	{
-	  y->d[0] = -y->d[0];
-	  n = -n;
-	}
-      return (n & 3);
-    }
-}