diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/sincos32.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/sincos32.c | 339 |
1 files changed, 339 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/sincos32.c b/sysdeps/ieee754/dbl-64/sincos32.c new file mode 100644 index 0000000000..41fe2f281a --- /dev/null +++ b/sysdeps/ieee754/dbl-64/sincos32.c @@ -0,0 +1,339 @@ + +/* + * IBM Accurate Mathematical Library + * Copyright (c) International Business Machines Corp., 2001 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ +/****************************************************************/ +/* MODULE_NAME: sincos32.c */ +/* */ +/* FUNCTIONS: ss32 */ +/* cc32 */ +/* c32 */ +/* sin32 */ +/* cos32 */ +/* mpsin */ +/* mpcos */ +/* mpranred */ +/* mpsin1 */ +/* mpcos1 */ +/* */ +/* FILES NEEDED: endian.h mpa.h sincos32.h */ +/* mpa.c */ +/* */ +/* Multi Precision sin() and cos() function with p=32 for sin()*/ +/* cos() arcsin() and arccos() routines */ +/* In addition mpranred() routine performs range reduction of */ +/* a double number x into multi precision number y, */ +/* such that y=x-n*pi/2, abs(y)<pi/4, n=0,+-1,+-2,.... */ +/****************************************************************/ +#include "endian.h" +#include "mpa.h" +#include "sincos32.h" + +/****************************************************************/ +/* Compute Multi-Precision sin() function for given p. Receive */ +/* Multi Precision number x and result stored at y */ +/****************************************************************/ +void ss32(mp_no *x, mp_no *y, int p) { + int i; + double a,b; + static const mp_no mpone = {1,1.0,1.0}; + mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0}; + for (i=1;i<=p;i++) mpk.d[i]=0; + + mul(x,x,&x2,p); + cpy(&oofac27,&gor,p); + cpy(&gor,&sum,p); + for (a=27.0;a>1.0;a-=2.0) { + mpk.d[1]=a*(a-1.0); + mul(&gor,&mpk,&mpt1,p); + cpy(&mpt1,&gor,p); + mul(&x2,&sum,&mpt1,p); + sub(&gor,&mpt1,&sum,p); + } + mul(x,&sum,y,p); +} + +/**********************************************************************/ +/* Compute Multi-Precision cos() function for given p. Receive Multi */ +/* Precision number x and result stored at y */ +/**********************************************************************/ +void cc32(mp_no *x, mp_no *y, int p) { + int i; + double a,b; + static const mp_no mpone = {1,1.0,1.0}; + mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0}; + for (i=1;i<=p;i++) mpk.d[i]=0; + + mul(x,x,&x2,p); + mpk.d[1]=27.0; + mul(&oofac27,&mpk,&gor,p); + cpy(&gor,&sum,p); + for (a=26.0;a>2.0;a-=2.0) { + mpk.d[1]=a*(a-1.0); + mul(&gor,&mpk,&mpt1,p); + cpy(&mpt1,&gor,p); + mul(&x2,&sum,&mpt1,p); + sub(&gor,&mpt1,&sum,p); + } + mul(&x2,&sum,y,p); +} + +/***************************************************************************/ +/* c32() computes both sin(x), cos(x) as Multi precision numbers */ +/***************************************************************************/ +void c32(mp_no *x, mp_no *y, mp_no *z, int p) { + static const mp_no mpt={1,1.0,2.0}, one={1,1.0,1.0}; + mp_no u,t,t1,t2,c,s; + int i; + cpy(x,&u,p); + u.e=u.e-1; + cc32(&u,&c,p); + ss32(&u,&s,p); + for (i=0;i<24;i++) { + mul(&c,&s,&t,p); + sub(&s,&t,&t1,p); + add(&t1,&t1,&s,p); + sub(&mpt,&c,&t1,p); + mul(&t1,&c,&t2,p); + add(&t2,&t2,&c,p); + } + sub(&one,&c,y,p); + cpy(&s,z,p); +} + +/************************************************************************/ +/*Routine receive double x and two double results of sin(x) and return */ +/*result which is more accurate */ +/*Computing sin(x) with multi precision routine c32 */ +/************************************************************************/ +double sin32(double x, double res, double res1) { + int p; + mp_no a,b,c; + p=32; + dbl_mp(res,&a,p); + dbl_mp(0.5*(res1-res),&b,p); + add(&a,&b,&c,p); + if (x>0.8) + { sub(&hp,&c,&a,p); + c32(&a,&b,&c,p); + } + else c32(&c,&a,&b,p); /* b=sin(0.5*(res+res1)) */ + dbl_mp(x,&c,p); /* c = x */ + sub(&b,&c,&a,p); + /* if a>0 return min(res,res1), otherwise return max(res,res1) */ + if (a.d[0]>0) return (res<res1)?res:res1; + else return (res>res1)?res:res1; +} + +/************************************************************************/ +/*Routine receive double x and two double results of cos(x) and return */ +/*result which is more accurate */ +/*Computing cos(x) with multi precision routine c32 */ +/************************************************************************/ +double cos32(double x, double res, double res1) { + int p; + mp_no a,b,c; + p=32; + dbl_mp(res,&a,p); + dbl_mp(0.5*(res1-res),&b,p); + add(&a,&b,&c,p); + if (x>2.4) + { sub(&pi,&c,&a,p); + c32(&a,&b,&c,p); + b.d[0]=-b.d[0]; + } + else if (x>0.8) + { sub(&hp,&c,&a,p); + c32(&a,&c,&b,p); + } + else c32(&c,&b,&a,p); /* b=cos(0.5*(res+res1)) */ + dbl_mp(x,&c,p); /* c = x */ + sub(&b,&c,&a,p); + /* if a>0 return max(res,res1), otherwise return min(res,res1) */ + if (a.d[0]>0) return (res>res1)?res:res1; + else return (res<res1)?res:res1; +} + +/*******************************************************************/ +/*Compute sin(x+dx) as Multi Precision number and return result as */ +/* double */ +/*******************************************************************/ +double mpsin(double x, double dx) { + int p; + double y; + mp_no a,b,c; + p=32; + dbl_mp(x,&a,p); + dbl_mp(dx,&b,p); + add(&a,&b,&c,p); + if (x>0.8) { sub(&hp,&c,&a,p); c32(&a,&b,&c,p); } + else c32(&c,&a,&b,p); /* b = sin(x+dx) */ + mp_dbl(&b,&y,p); + return y; +} + +/*******************************************************************/ +/* Compute cos()of double-length number (x+dx) as Multi Precision */ +/* number and return result as double */ +/*******************************************************************/ +double mpcos(double x, double dx) { + int p; + double y; + mp_no a,b,c; + p=32; + dbl_mp(x,&a,p); + dbl_mp(dx,&b,p); + add(&a,&b,&c,p); + if (x>0.8) + { sub(&hp,&c,&b,p); + c32(&b,&a,&c,p); + } + else c32(&c,&a,&b,p); /* a = cos(x+dx) */ + mp_dbl(&a,&y,p); + return y; +} + +/******************************************************************/ +/* mpranred() performs range reduction of a double number x into */ +/* multi precision number y, such that y=x-n*pi/2, abs(y)<pi/4, */ +/* n=0,+-1,+-2,.... */ +/* Return int which indicates in which quarter of circle x is */ +/******************************************************************/ +int mpranred(double x, mp_no *y, int p) +{ + number v; + double t,xn; + int i,k,n; + static const mp_no one = {1,1.0,1.0}; + mp_no a,b,c; + + if (ABS(x) < 2.8e14) { + t = (x*hpinv.d + toint.d); + xn = t - toint.d; + v.d = t; + n =v.i[LOW_HALF]&3; + dbl_mp(xn,&a,p); + mul(&a,&hp,&b,p); + dbl_mp(x,&c,p); + sub(&c,&b,y,p); + return n; + } + else { /* if x is very big more precision required */ + dbl_mp(x,&a,p); + a.d[0]=1.0; + k = a.e-5; + if (k < 0) k=0; + b.e = -k; + b.d[0] = 1.0; + for (i=0;i<p;i++) b.d[i+1] = toverp[i+k]; + mul(&a,&b,&c,p); + t = c.d[c.e]; + for (i=1;i<=p-c.e;i++) c.d[i]=c.d[i+c.e]; + for (i=p+1-c.e;i<=p;i++) c.d[i]=0; + c.e=0; + if (c.d[1] >= 8388608.0) + { t +=1.0; + sub(&c,&one,&b,p); + mul(&b,&hp,y,p); + } + else mul(&c,&hp,y,p); + n = (int) t; + if (x < 0) { y->d[0] = - y->d[0]; n = -n; } + return (n&3); + } +} + +/*******************************************************************/ +/* Multi-Precision sin() function subroutine, for p=32. It is */ +/* based on the routines mpranred() and c32(). */ +/*******************************************************************/ +double mpsin1(double x) +{ + int p; + int n; + mp_no u,s,c; + double y; + p=32; + n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ + c32(&u,&c,&s,p); + switch (n) { /* in which quarter of unit circle y is*/ + case 0: + mp_dbl(&s,&y,p); + return y; + break; + + case 2: + mp_dbl(&s,&y,p); + return -y; + break; + + case 1: + mp_dbl(&c,&y,p); + return y; + break; + + case 3: + mp_dbl(&c,&y,p); + return -y; + break; + + } + return 0; /* unreachable, to make the compiler happy */ +} + +/*****************************************************************/ +/* Multi-Precision cos() function subroutine, for p=32. It is */ +/* based on the routines mpranred() and c32(). */ +/*****************************************************************/ + +double mpcos1(double x) +{ + int p; + int n; + mp_no u,s,c; + double y; + + p=32; + n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ + c32(&u,&c,&s,p); + switch (n) { /* in what quarter of unit circle y is*/ + + case 0: + mp_dbl(&c,&y,p); + return y; + break; + + case 2: + mp_dbl(&c,&y,p); + return -y; + break; + + case 1: + mp_dbl(&s,&y,p); + return -y; + break; + + case 3: + mp_dbl(&s,&y,p); + return y; + break; + + } + return 0; /* unreachable, to make the compiler happy */ +} +/******************************************************************/ |