about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/s_sin.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/s_sin.c')
-rw-r--r--sysdeps/ieee754/dbl-64/s_sin.c927
1 files changed, 0 insertions, 927 deletions
diff --git a/sysdeps/ieee754/dbl-64/s_sin.c b/sysdeps/ieee754/dbl-64/s_sin.c
deleted file mode 100644
index c258d39e49..0000000000
--- a/sysdeps/ieee754/dbl-64/s_sin.c
+++ /dev/null
@@ -1,927 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU  Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/****************************************************************************/
-/*                                                                          */
-/* MODULE_NAME:usncs.c                                                      */
-/*                                                                          */
-/* FUNCTIONS: usin                                                          */
-/*            ucos                                                          */
-/*            slow                                                          */
-/*            slow1                                                         */
-/*            slow2                                                         */
-/*            sloww                                                         */
-/*            sloww1                                                        */
-/*            sloww2                                                        */
-/*            bsloww                                                        */
-/*            bsloww1                                                       */
-/*            bsloww2                                                       */
-/*            cslow2                                                        */
-/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h  usncs.h                     */
-/*               branred.c sincos32.c dosincos.c mpa.c                      */
-/*               sincos.tbl                                                 */
-/*                                                                          */
-/* An ultimate sin and  routine. Given an IEEE double machine number x       */
-/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
-/* Assumption: Machine arithmetic operations are performed in               */
-/* round to nearest mode of IEEE 754 standard.                              */
-/*                                                                          */
-/****************************************************************************/
-
-
-#include <errno.h>
-#include <float.h>
-#include "endian.h"
-#include "mydefs.h"
-#include "usncs.h"
-#include "MathLib.h"
-#include <math.h>
-#include <math_private.h>
-#include <fenv.h>
-
-/* Helper macros to compute sin of the input values.  */
-#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
-
-#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
-
-/* The computed polynomial is a variation of the Taylor series expansion for
-   sin(a):
-
-   a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
-
-   The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
-   on.  The result is returned to LHS and correction in COR.  */
-#define TAYLOR_SIN(xx, a, da, cor) \
-({									      \
-  double t = ((POLYNOMIAL (xx)  * (a) - 0.5 * (da))  * (xx) + (da));	      \
-  double res = (a) + t;							      \
-  (cor) = ((a) - res) + t;						      \
-  res;									      \
-})
-
-/* This is again a variation of the Taylor series expansion with the term
-   x^3/3! expanded into the following for better accuracy:
-
-   bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
-
-   The correction term is dx and bb + aa = -1/3!
-   */
-#define TAYLOR_SLOW(x0, dx, cor) \
-({									      \
-  static const double th2_36 = 206158430208.0;	/*    1.5*2**37   */	      \
-  double xx = (x0) * (x0);						      \
-  double x1 = ((x0) + th2_36) - th2_36;					      \
-  double y = aa * x1 * x1 * x1;						      \
-  double r = (x0) + y;							      \
-  double x2 = ((x0) - x1) + (dx);					      \
-  double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2)	      \
-	      * (x0)  + aa * x2 * x2 * x2 + (dx));			      \
-  t = (((x0) - r) + y) + t;						      \
-  double res = r + t;							      \
-  (cor) = (r - res) + t;						      \
-  res;									      \
-})
-
-#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
-({									      \
-  int4 k = u.i[LOW_HALF] << 2;						      \
-  sn = __sincostab.x[k];						      \
-  ssn = __sincostab.x[k + 1];						      \
-  cs = __sincostab.x[k + 2];						      \
-  ccs = __sincostab.x[k + 3];						      \
-})
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-extern const union
-{
-  int4 i[880];
-  double x[440];
-} __sincostab attribute_hidden;
-
-static const double
-  sn3 = -1.66666666666664880952546298448555E-01,
-  sn5 = 8.33333214285722277379541354343671E-03,
-  cs2 = 4.99999999999999999999950396842453E-01,
-  cs4 = -4.16666666666664434524222570944589E-02,
-  cs6 = 1.38888874007937613028114285595617E-03;
-
-static const double t22 = 0x1.8p22;
-
-void __dubsin (double x, double dx, double w[]);
-void __docos (double x, double dx, double w[]);
-double __mpsin (double x, double dx, bool reduce_range);
-double __mpcos (double x, double dx, bool reduce_range);
-static double slow (double x);
-static double slow1 (double x);
-static double slow2 (double x);
-static double sloww (double x, double dx, double orig, bool shift_quadrant);
-static double sloww1 (double x, double dx, double orig, bool shift_quadrant);
-static double sloww2 (double x, double dx, double orig, int n);
-static double bsloww (double x, double dx, double orig, int n);
-static double bsloww1 (double x, double dx, double orig, int n);
-static double bsloww2 (double x, double dx, double orig, int n);
-int __branred (double x, double *a, double *aa);
-static double cslow2 (double x);
-
-/* Given a number partitioned into X and DX, this function computes the cosine
-   of the number by combining the sin and cos of X (as computed by a variation
-   of the Taylor series) with the values looked up from the sin/cos table to
-   get the result in RES and a correction value in COR.  */
-static inline double
-__always_inline
-do_cos (double x, double dx, double *corp)
-{
-  mynumber u;
-
-  if (x < 0)
-    dx = -dx;
-
-  u.x = big + fabs (x);
-  x = fabs (x) - (u.x - big) + dx;
-
-  double xx, s, sn, ssn, c, cs, ccs, res, cor;
-  xx = x * x;
-  s = x + x * xx * (sn3 + xx * sn5);
-  c = xx * (cs2 + xx * (cs4 + xx * cs6));
-  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
-  cor = (ccs - s * ssn - cs * c) - sn * s;
-  res = cs + cor;
-  cor = (cs - res) + cor;
-  *corp = cor;
-  return res;
-}
-
-/* A more precise variant of DO_COS.  EPS is the adjustment to the correction
-   COR.  */
-static inline double
-__always_inline
-do_cos_slow (double x, double dx, double eps, double *corp)
-{
-  mynumber u;
-
-  if (x <= 0)
-    dx = -dx;
-
-  u.x = big + fabs (x);
-  x = fabs (x) - (u.x - big);
-
-  double xx, y, x1, x2, e1, e2, res, cor;
-  double s, sn, ssn, c, cs, ccs;
-  xx = x * x;
-  s = x * xx * (sn3 + xx * sn5);
-  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
-  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
-  x1 = (x + t22) - t22;
-  x2 = (x - x1) + dx;
-  e1 = (sn + t22) - t22;
-  e2 = (sn - e1) + ssn;
-  cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
-  y = cs - e1 * x1;
-  cor = cor + ((cs - y) - e1 * x1);
-  res = y + cor;
-  cor = (y - res) + cor;
-  cor = 1.0005 * cor + __copysign (eps, cor);
-  *corp = cor;
-  return res;
-}
-
-/* Given a number partitioned into X and DX, this function computes the sine of
-   the number by combining the sin and cos of X (as computed by a variation of
-   the Taylor series) with the values looked up from the sin/cos table to get
-   the result in RES and a correction value in COR.  */
-static inline double
-__always_inline
-do_sin (double x, double dx, double *corp)
-{
-  mynumber u;
-
-  if (x <= 0)
-    dx = -dx;
-  u.x = big + fabs (x);
-  x = fabs (x) - (u.x - big);
-
-  double xx, s, sn, ssn, c, cs, ccs, cor, res;
-  xx = x * x;
-  s = x + (dx + x * xx * (sn3 + xx * sn5));
-  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
-  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
-  cor = (ssn + s * ccs - sn * c) + cs * s;
-  res = sn + cor;
-  cor = (sn - res) + cor;
-  *corp = cor;
-  return res;
-}
-
-/* A more precise variant of DO_SIN.  EPS is the adjustment to the correction
-   COR.  */
-static inline double
-__always_inline
-do_sin_slow (double x, double dx, double eps, double *corp)
-{
-  mynumber u;
-
-  if (x <= 0)
-    dx = -dx;
-  u.x = big + fabs (x);
-  x = fabs (x) - (u.x - big);
-
-  double xx, y, x1, x2, c1, c2, res, cor;
-  double s, sn, ssn, c, cs, ccs;
-  xx = x * x;
-  s = x * xx * (sn3 + xx * sn5);
-  c = xx * (cs2 + xx * (cs4 + xx * cs6));
-  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
-  x1 = (x + t22) - t22;
-  x2 = (x - x1) + dx;
-  c1 = (cs + t22) - t22;
-  c2 = (cs - c1) + ccs;
-  cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
-  y = sn + c1 * x1;
-  cor = cor + ((sn - y) + c1 * x1);
-  res = y + cor;
-  cor = (y - res) + cor;
-  cor = 1.0005 * cor + __copysign (eps, cor);
-  *corp = cor;
-  return res;
-}
-
-/* Reduce range of X and compute sin of a + da. When SHIFT_QUADRANT is true,
-   the routine returns the cosine of a + da by rotating the quadrant once and
-   computing the sine of the result.  */
-static inline double
-__always_inline
-reduce_and_compute (double x, bool shift_quadrant)
-{
-  double retval = 0, a, da;
-  unsigned int n = __branred (x, &a, &da);
-  int4 k = (n + shift_quadrant) % 4;
-  switch (k)
-    {
-    case 2:
-      a = -a;
-      da = -da;
-      /* Fall through.  */
-    case 0:
-      if (a * a < 0.01588)
-	retval = bsloww (a, da, x, n);
-      else
-	retval = bsloww1 (a, da, x, n);
-      break;
-
-    case 1:
-    case 3:
-      retval = bsloww2 (a, da, x, n);
-      break;
-    }
-  return retval;
-}
-
-static inline int4
-__always_inline
-reduce_sincos_1 (double x, double *a, double *da)
-{
-  mynumber v;
-
-  double t = (x * hpinv + toint);
-  double xn = t - toint;
-  v.x = t;
-  double y = (x - xn * mp1) - xn * mp2;
-  int4 n = v.i[LOW_HALF] & 3;
-  double db = xn * mp3;
-  double b = y - db;
-  db = (y - b) - db;
-
-  *a = b;
-  *da = db;
-
-  return n;
-}
-
-/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
-   true, which results in shifting the quadrant N clockwise.  */
-static double
-__always_inline
-do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
-{
-  double xx, retval, res, cor;
-  double eps = fabs (x) * 1.2e-30;
-
-  int k1 = (n + shift_quadrant) & 3;
-  switch (k1)
-    {			/* quarter of unit circle */
-    case 2:
-      a = -a;
-      da = -da;
-      /* Fall through.  */
-    case 0:
-      xx = a * a;
-      if (xx < 0.01588)
-	{
-	  /* Taylor series.  */
-	  res = TAYLOR_SIN (xx, a, da, cor);
-	  cor = 1.02 * cor + __copysign (eps, cor);
-	  retval = (res == res + cor) ? res : sloww (a, da, x, shift_quadrant);
-	}
-      else
-	{
-	  res = do_sin (a, da, &cor);
-	  cor = 1.035 * cor + __copysign (eps, cor);
-	  retval = ((res == res + cor) ? __copysign (res, a)
-		    : sloww1 (a, da, x, shift_quadrant));
-	}
-      break;
-
-    case 1:
-    case 3:
-      res = do_cos (a, da, &cor);
-      cor = 1.025 * cor + __copysign (eps, cor);
-      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
-		: sloww2 (a, da, x, n));
-      break;
-    }
-
-  return retval;
-}
-
-static inline int4
-__always_inline
-reduce_sincos_2 (double x, double *a, double *da)
-{
-  mynumber v;
-
-  double t = (x * hpinv + toint);
-  double xn = t - toint;
-  v.x = t;
-  double xn1 = (xn + 8.0e22) - 8.0e22;
-  double xn2 = xn - xn1;
-  double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
-  int4 n = v.i[LOW_HALF] & 3;
-  double db = xn1 * pp3;
-  t = y - db;
-  db = (y - t) - db;
-  db = (db - xn2 * pp3) - xn * pp4;
-  double b = t + db;
-  db = (t - b) + db;
-
-  *a = b;
-  *da = db;
-
-  return n;
-}
-
-/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
-   true, which results in shifting the quadrant N clockwise.  */
-static double
-__always_inline
-do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
-{
-  double res, retval, cor, xx;
-
-  double eps = 1.0e-24;
-
-  int4 k = (n + shift_quadrant) & 3;
-
-  switch (k)
-    {
-    case 2:
-      a = -a;
-      da = -da;
-      /* Fall through.  */
-    case 0:
-      xx = a * a;
-      if (xx < 0.01588)
-	{
-	  /* Taylor series.  */
-	  res = TAYLOR_SIN (xx, a, da, cor);
-	  cor = 1.02 * cor + __copysign (eps, cor);
-	  retval = (res == res + cor) ? res : bsloww (a, da, x, n);
-	}
-      else
-	{
-	  res = do_sin (a, da, &cor);
-	  cor = 1.035 * cor + __copysign (eps, cor);
-	  retval = ((res == res + cor) ? __copysign (res, a)
-		    : bsloww1 (a, da, x, n));
-	}
-      break;
-
-    case 1:
-    case 3:
-      res = do_cos (a, da, &cor);
-      cor = 1.025 * cor + __copysign (eps, cor);
-      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
-		: bsloww2 (a, da, x, n));
-      break;
-    }
-
-  return retval;
-}
-
-/*******************************************************************/
-/* An ultimate sin routine. Given an IEEE double machine number x   */
-/* it computes the correctly rounded (to nearest) value of sin(x)  */
-/*******************************************************************/
-#ifdef IN_SINCOS
-static double
-#else
-double
-SECTION
-#endif
-__sin (double x)
-{
-  double xx, res, t, cor;
-  mynumber u;
-  int4 k, m;
-  double retval = 0;
-
-#ifndef IN_SINCOS
-  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
-#endif
-
-  u.x = x;
-  m = u.i[HIGH_HALF];
-  k = 0x7fffffff & m;		/* no sign           */
-  if (k < 0x3e500000)		/* if x->0 =>sin(x)=x */
-    {
-      math_check_force_underflow (x);
-      retval = x;
-    }
- /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
-  else if (k < 0x3fd00000)
-    {
-      xx = x * x;
-      /* Taylor series.  */
-      t = POLYNOMIAL (xx) * (xx * x);
-      res = x + t;
-      cor = (x - res) + t;
-      retval = (res == res + 1.07 * cor) ? res : slow (x);
-    }				/*  else  if (k < 0x3fd00000)    */
-/*---------------------------- 0.25<|x|< 0.855469---------------------- */
-  else if (k < 0x3feb6000)
-    {
-      res = do_sin (x, 0, &cor);
-      retval = (res == res + 1.096 * cor) ? res : slow1 (x);
-      retval = __copysign (retval, x);
-    }				/*   else  if (k < 0x3feb6000)    */
-
-/*----------------------- 0.855469  <|x|<2.426265  ----------------------*/
-  else if (k < 0x400368fd)
-    {
-
-      t = hp0 - fabs (x);
-      res = do_cos (t, hp1, &cor);
-      retval = (res == res + 1.020 * cor) ? res : slow2 (x);
-      retval = __copysign (retval, x);
-    }				/*   else  if (k < 0x400368fd)    */
-
-#ifndef IN_SINCOS
-/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
-  else if (k < 0x419921FB)
-    {
-      double a, da;
-      int4 n = reduce_sincos_1 (x, &a, &da);
-      retval = do_sincos_1 (a, da, x, n, false);
-    }				/*   else  if (k <  0x419921FB )    */
-
-/*---------------------105414350 <|x|< 281474976710656 --------------------*/
-  else if (k < 0x42F00000)
-    {
-      double a, da;
-
-      int4 n = reduce_sincos_2 (x, &a, &da);
-      retval = do_sincos_2 (a, da, x, n, false);
-    }				/*   else  if (k <  0x42F00000 )   */
-
-/* -----------------281474976710656 <|x| <2^1024----------------------------*/
-  else if (k < 0x7ff00000)
-    retval = reduce_and_compute (x, false);
-
-/*--------------------- |x| > 2^1024 ----------------------------------*/
-  else
-    {
-      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
-	__set_errno (EDOM);
-      retval = x / x;
-    }
-#endif
-
-  return retval;
-}
-
-
-/*******************************************************************/
-/* An ultimate cos routine. Given an IEEE double machine number x   */
-/* it computes the correctly rounded (to nearest) value of cos(x)  */
-/*******************************************************************/
-
-#ifdef IN_SINCOS
-static double
-#else
-double
-SECTION
-#endif
-__cos (double x)
-{
-  double y, xx, res, cor, a, da;
-  mynumber u;
-  int4 k, m;
-
-  double retval = 0;
-
-#ifndef IN_SINCOS
-  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
-#endif
-
-  u.x = x;
-  m = u.i[HIGH_HALF];
-  k = 0x7fffffff & m;
-
-  /* |x|<2^-27 => cos(x)=1 */
-  if (k < 0x3e400000)
-    retval = 1.0;
-
-  else if (k < 0x3feb6000)
-    {				/* 2^-27 < |x| < 0.855469 */
-      res = do_cos (x, 0, &cor);
-      retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
-    }				/*   else  if (k < 0x3feb6000)    */
-
-  else if (k < 0x400368fd)
-    { /* 0.855469  <|x|<2.426265  */ ;
-      y = hp0 - fabs (x);
-      a = y + hp1;
-      da = (y - a) + hp1;
-      xx = a * a;
-      if (xx < 0.01588)
-	{
-	  res = TAYLOR_SIN (xx, a, da, cor);
-	  cor = 1.02 * cor + __copysign (1.0e-31, cor);
-	  retval = (res == res + cor) ? res : sloww (a, da, x, true);
-	}
-      else
-	{
-	  res = do_sin (a, da, &cor);
-	  cor = 1.035 * cor + __copysign (1.0e-31, cor);
-	  retval = ((res == res + cor) ? __copysign (res, a)
-		    : sloww1 (a, da, x, true));
-	}
-
-    }				/*   else  if (k < 0x400368fd)    */
-
-
-#ifndef IN_SINCOS
-  else if (k < 0x419921FB)
-    {				/* 2.426265<|x|< 105414350 */
-      double a, da;
-      int4 n = reduce_sincos_1 (x, &a, &da);
-      retval = do_sincos_1 (a, da, x, n, true);
-    }				/*   else  if (k <  0x419921FB )    */
-
-  else if (k < 0x42F00000)
-    {
-      double a, da;
-
-      int4 n = reduce_sincos_2 (x, &a, &da);
-      retval = do_sincos_2 (a, da, x, n, true);
-    }				/*   else  if (k <  0x42F00000 )    */
-
-  /* 281474976710656 <|x| <2^1024 */
-  else if (k < 0x7ff00000)
-    retval = reduce_and_compute (x, true);
-
-  else
-    {
-      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
-	__set_errno (EDOM);
-      retval = x / x;		/* |x| > 2^1024 */
-    }
-#endif
-
-  return retval;
-}
-
-/************************************************************************/
-/*  Routine compute sin(x) for  2^-26 < |x|< 0.25 by  Taylor with more   */
-/* precision  and if still doesn't accurate enough by mpsin   or dubsin */
-/************************************************************************/
-
-static inline double
-__always_inline
-slow (double x)
-{
-  double res, cor, w[2];
-  res = TAYLOR_SLOW (x, 0, cor);
-  if (res == res + 1.0007 * cor)
-    return res;
-
-  __dubsin (fabs (x), 0, w);
-  if (w[0] == w[0] + 1.000000001 * w[1])
-    return __copysign (w[0], x);
-
-  return __copysign (__mpsin (fabs (x), 0, false), x);
-}
-
-/*******************************************************************************/
-/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
-/* and if result still doesn't accurate enough by mpsin   or dubsin            */
-/*******************************************************************************/
-
-static inline double
-__always_inline
-slow1 (double x)
-{
-  double w[2], cor, res;
-
-  res = do_sin_slow (x, 0, 0, &cor);
-  if (res == res + cor)
-    return res;
-
-  __dubsin (fabs (x), 0, w);
-  if (w[0] == w[0] + 1.000000005 * w[1])
-    return w[0];
-
-  return __mpsin (fabs (x), 0, false);
-}
-
-/**************************************************************************/
-/*  Routine compute sin(x) for   0.855469  <|x|<2.426265  by  __sincostab.tbl  */
-/* and if result still doesn't accurate enough by mpsin   or dubsin       */
-/**************************************************************************/
-static inline double
-__always_inline
-slow2 (double x)
-{
-  double w[2], y, y1, y2, cor, res;
-
-  double t = hp0 - fabs (x);
-  res = do_cos_slow (t, hp1, 0, &cor);
-  if (res == res + cor)
-    return res;
-
-  y = fabs (x) - hp0;
-  y1 = y - hp1;
-  y2 = (y - y1) - hp1;
-  __docos (y1, y2, w);
-  if (w[0] == w[0] + 1.000000005 * w[1])
-    return w[0];
-
-  return __mpsin (fabs (x), 0, false);
-}
-
-/* Compute sin(x + dx) where X is small enough to use Taylor series around zero
-   and (x + dx) in the first or third quarter of the unit circle.  ORIG is the
-   original value of X for computing error of the result.  If the result is not
-   accurate enough, the routine calls mpsin or dubsin.  SHIFT_QUADRANT rotates
-   the unit circle by 1 to compute the cosine instead of sine.  */
-static inline double
-__always_inline
-sloww (double x, double dx, double orig, bool shift_quadrant)
-{
-  double y, t, res, cor, w[2], a, da, xn;
-  mynumber v;
-  int4 n;
-  res = TAYLOR_SLOW (x, dx, cor);
-
-  double eps = fabs (orig) * 3.1e-30;
-
-  cor = 1.0005 * cor + __copysign (eps, cor);
-
-  if (res == res + cor)
-    return res;
-
-  a = fabs (x);
-  da = (x > 0) ? dx : -dx;
-  __dubsin (a, da, w);
-  eps = fabs (orig) * 1.1e-30;
-  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return __copysign (w[0], x);
-
-  t = (orig * hpinv + toint);
-  xn = t - toint;
-  v.x = t;
-  y = (orig - xn * mp1) - xn * mp2;
-  n = (v.i[LOW_HALF] + shift_quadrant) & 3;
-  da = xn * pp3;
-  t = y - da;
-  da = (y - t) - da;
-  y = xn * pp4;
-  a = t - y;
-  da = ((t - a) - y) + da;
-
-  if (n & 2)
-    {
-      a = -a;
-      da = -da;
-    }
-  x = fabs (a);
-  dx = (a > 0) ? da : -da;
-  __dubsin (x, dx, w);
-  eps = fabs (orig) * 1.1e-40;
-  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return __copysign (w[0], a);
-
-  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/* Compute sin(x + dx) where X is in the first or third quarter of the unit
-   circle.  ORIG is the original value of X for computing error of the result.
-   If the result is not accurate enough, the routine calls mpsin or dubsin.
-   SHIFT_QUADRANT rotates the unit circle by 1 to compute the cosine instead of
-   sine.  */
-static inline double
-__always_inline
-sloww1 (double x, double dx, double orig, bool shift_quadrant)
-{
-  double w[2], cor, res;
-
-  res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
-
-  if (res == res + cor)
-    return __copysign (res, x);
-
-  dx = (x > 0 ? dx : -dx);
-  __dubsin (fabs (x), dx, w);
-
-  double eps = 1.1e-30 * fabs (orig);
-  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return __copysign (w[0], x);
-
-  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/*  Routine compute sin(x+dx)   (Double-Length number) where x in second or */
-/*  fourth quarter of unit circle.Routine receive also  the  original value */
-/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
-/* accurate enough routine calls  mpsin1   or dubsin                       */
-/***************************************************************************/
-
-static inline double
-__always_inline
-sloww2 (double x, double dx, double orig, int n)
-{
-  double w[2], cor, res;
-
-  res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
-
-  if (res == res + cor)
-    return (n & 2) ? -res : res;
-
-  dx = x > 0 ? dx : -dx;
-  __docos (fabs (x), dx, w);
-
-  double eps = 1.1e-30 * fabs (orig);
-  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return (n & 2) ? -w[0] : w[0];
-
-  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
-}
-
-/***************************************************************************/
-/*  Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x   */
-/* is small enough to use Taylor series around zero and   (x+dx)            */
-/* in first or third quarter of unit circle.Routine receive also            */
-/* (right argument) the  original   value of x for computing error of      */
-/* result.And if result not accurate enough routine calls other routines    */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww (double x, double dx, double orig, int n)
-{
-  double res, cor, w[2], a, da;
-
-  res = TAYLOR_SLOW (x, dx, cor);
-  cor = 1.0005 * cor + __copysign (1.1e-24, cor);
-  if (res == res + cor)
-    return res;
-
-  a = fabs (x);
-  da = (x > 0) ? dx : -dx;
-  __dubsin (a, da, w);
-  cor = 1.000000001 * w[1] + __copysign (1.1e-24, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return __copysign (w[0], x);
-
-  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
-/* in first or third quarter of unit circle.Routine receive also            */
-/* (right argument) the original  value of x for computing error of result.*/
-/* And if result not  accurate enough routine calls  other routines         */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww1 (double x, double dx, double orig, int n)
-{
-  double w[2], cor, res;
-
-  res = do_sin_slow (x, dx, 1.1e-24, &cor);
-  if (res == res + cor)
-    return (x > 0) ? res : -res;
-
-  dx = (x > 0) ? dx : -dx;
-  __dubsin (fabs (x), dx, w);
-
-  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return __copysign (w[0], x);
-
-  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
-/* in second or fourth quarter of unit circle.Routine receive also  the     */
-/* original value and quarter(n= 1or 3)of x for computing error of result.  */
-/* And if result not accurate enough routine calls  other routines          */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww2 (double x, double dx, double orig, int n)
-{
-  double w[2], cor, res;
-
-  res = do_cos_slow (x, dx, 1.1e-24, &cor);
-  if (res == res + cor)
-    return (n & 2) ? -res : res;
-
-  dx = (x > 0) ? dx : -dx;
-  __docos (fabs (x), dx, w);
-
-  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
-
-  if (w[0] == w[0] + cor)
-    return (n & 2) ? -w[0] : w[0];
-
-  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
-}
-
-/************************************************************************/
-/*  Routine compute cos(x) for  2^-27 < |x|< 0.25 by  Taylor with more   */
-/* precision  and if still doesn't accurate enough by mpcos   or docos  */
-/************************************************************************/
-
-static inline double
-__always_inline
-cslow2 (double x)
-{
-  double w[2], cor, res;
-
-  res = do_cos_slow (x, 0, 0, &cor);
-  if (res == res + cor)
-    return res;
-
-  __docos (fabs (x), 0, w);
-  if (w[0] == w[0] + 1.000000005 * w[1])
-    return w[0];
-
-  return __mpcos (x, 0, false);
-}
-
-#ifndef __cos
-weak_alias (__cos, cos)
-# ifdef NO_LONG_DOUBLE
-strong_alias (__cos, __cosl)
-weak_alias (__cos, cosl)
-# endif
-#endif
-#ifndef __sin
-weak_alias (__sin, sin)
-# ifdef NO_LONG_DOUBLE
-strong_alias (__sin, __sinl)
-weak_alias (__sin, sinl)
-# endif
-#endif