diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/s_atan.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/s_atan.c | 364 |
1 files changed, 211 insertions, 153 deletions
diff --git a/sysdeps/ieee754/dbl-64/s_atan.c b/sysdeps/ieee754/dbl-64/s_atan.c index cad3ba12a8..997e29b5e4 100644 --- a/sysdeps/ieee754/dbl-64/s_atan.c +++ b/sysdeps/ieee754/dbl-64/s_atan.c @@ -1,163 +1,221 @@ -/* @(#)s_atan.c 5.1 93/09/24 */ /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * IBM Accurate Mathematical Library + * Copyright (c) International Business Machines Corp., 2001 * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, - for performance improvement on pipelined processors. -*/ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: s_atan.c,v 1.8 1995/05/10 20:46:45 jtc Exp $"; -#endif - -/* atan(x) - * Method - * 1. Reduce x to positive by atan(x) = -atan(-x). - * 2. According to the integer k=4t+0.25 chopped, t=x, the argument - * is further reduced to one of the following intervals and the - * arctangent of t is evaluated by the corresponding formula: + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. * - * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) - * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) - * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) - * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) - * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ +/************************************************************************/ +/* MODULE_NAME: atnat.c */ +/* */ +/* FUNCTIONS: uatan */ +/* atanMp */ +/* signArctan */ +/* */ +/* */ +/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */ +/* mpatan.c mpatan2.c mpsqrt.c */ +/* uatan.tbl */ +/* */ +/* An ultimate atan() routine. Given an IEEE double machine number x */ +/* it computes the correctly rounded (to nearest) value of atan(x). */ +/* */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/* */ +/************************************************************************/ -#include "math.h" -#include "math_private.h" +#include "dla.h" +#include "mpa.h" +#include "MathLib.h" +#include "uatan.tbl" +#include "atnat.h" + +void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */ +static double atanMp(double,const int[]); +double __signArctan(double,double); +/* An ultimate atan() routine. Given an IEEE double machine number x, */ +/* routine computes the correctly rounded (to nearest) value of atan(x). */ +double atan(double x) { + + + double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3, + v,vv,w,ww,y,yy,y1,y2,z,zz; + int i,ux,dx,p; + static const int pr[M]={6,8,10,32}; + number num; + + mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr; + + num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; + + /* x=NaN */ + if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000)) + return x+x; + + /* Regular values of x, including denormals +-0 and +-INF */ + u = (x<ZERO) ? -x : x; + if (u<C) { + if (u<B) { + if (u<A) { /* u < A */ + return x; } + else { /* A <= u < B */ + v=x*x; yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + if ((y=x+(yy-U1*x)) == x+(yy+U1*x)) return y; + + EMULV(x,x,v,vv,t1,t2,t3,t4,t5) /* v+vv=x^2 */ + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2) + if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1)) return y; + + return atanMp(x,pr); + } } + else { /* B <= u < C */ + i=(TWO52+TWO8*u)-TWO52; i-=16; + z=u-cij[i][0].d; + yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+ + z*(cij[i][5].d+z* cij[i][6].d)))); + t1=cij[i][1].d; + if (i<112) { + if (i<48) u2=U21; /* u < 1/4 */ + else u2=U22; } /* 1/4 <= u < 1/2 */ + else { + if (i<176) u2=U23; /* 1/2 <= u < 3/4 */ + else u2=U24; } /* 3/4 <= u <= 1 */ + if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1)) return __signArctan(x,y); + + z=u-hij[i][0].d; + s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+ + z*(hij[i][14].d+z* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2)) return __signArctan(x,y); + + return atanMp(x,pr); + } + } + else { + if (u<D) { /* C <= u < D */ + w=ONE/u; + EMULV(w,u,t1,t2,t3,t4,t5,t6,t7) + ww=w*((ONE-t1)-t2); + i=(TWO52+TWO8*w)-TWO52; i-=16; + z=(w-cij[i][0].d)+ww; + yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+ + z*(cij[i][5].d+z* cij[i][6].d)))); + t1=HPI-cij[i][1].d; + if (i<112) u3=U31; /* w < 1/2 */ + else u3=U32; /* w >= 1/2 */ + if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y); + + DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) + t1=w-hij[i][0].d; + EADD(t1,ww,z,zz) + s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+ + z*(hij[i][14].d+z* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2) + if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y); + + return atanMp(x,pr); + } + else { + if (u<E) { /* D <= u < E */ + w=ONE/u; v=w*w; + EMULV(w,u,t1,t2,t3,t4,t5,t6,t7) + yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + ww=w*((ONE-t1)-t2); + ESUB(HPI,w,t3,cor) + yy=((HPI1+cor)-ww)-yy; + if ((y=t3+(yy-U4)) == t3+(yy+U4)) return __signArctan(x,y); + + DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) + MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(w,ww,s2,ss2,s1,ss1,t1,t2) + SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2) + if ((y=s2+(ss2-U8)) == s2+(ss2+U8)) return __signArctan(x,y); + + return atanMp(x,pr); + } + else { + /* u >= E */ + if (x>0) return HPI; + else return MHPI; } + } + } -#ifdef __STDC__ -static const double atanhi[] = { -#else -static double atanhi[] = { -#endif - 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ - 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ - 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ - 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ -}; - -#ifdef __STDC__ -static const double atanlo[] = { -#else -static double atanlo[] = { -#endif - 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ - 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ - 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ - 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ -}; - -#ifdef __STDC__ -static const double aT[] = { -#else -static double aT[] = { -#endif - 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ - -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ - 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ - -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ - 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ - -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ - 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ - -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ - 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ - -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ - 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ -}; - -#ifdef __STDC__ - static const double -#else - static double -#endif -one = 1.0, -huge = 1.0e300; - -#ifdef __STDC__ - double __atan(double x) -#else - double __atan(x) - double x; -#endif -{ - double w,s1,z,s,w2,w4,s11,s12,s13,s21,s22,s23; - int32_t ix,hx,id; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x44100000) { /* if |x| >= 2^66 */ - u_int32_t low; - GET_LOW_WORD(low,x); - if(ix>0x7ff00000|| - (ix==0x7ff00000&&(low!=0))) - return x+x; /* NaN */ - if(hx>0) return atanhi[3]+atanlo[3]; - else return -atanhi[3]-atanlo[3]; - } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ - if (ix < 0x3e200000) { /* |x| < 2^-29 */ - if(huge+x>one) return x; /* raise inexact */ - } - id = -1; - } else { - x = fabs(x); - if (ix < 0x3ff30000) { /* |x| < 1.1875 */ - if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ - id = 0; x = (2.0*x-one)/(2.0+x); - } else { /* 11/16<=|x|< 19/16 */ - id = 1; x = (x-one)/(x+one); - } - } else { - if (ix < 0x40038000) { /* |x| < 2.4375 */ - id = 2; x = (x-1.5)/(one+1.5*x); - } else { /* 2.4375 <= |x| < 2^66 */ - id = 3; x = -1.0/x; - } - }} - /* end of argument reduction */ - z = x*x; - w = z*z; - /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ -#ifdef DO_NOT_USE_THIS - s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); - s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); - if (id<0) return x - x*(s1+s2); - else { - z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); - return (hx<0)? -z:z; - } -#else - s11 = aT[8]+w*aT[10]; w2=w*w; - s12 = aT[4]+w*aT[6]; w4=w2*w2; - s13 = aT[0]+w*aT[2]; - s21 = aT[7]+w*aT[9]; - s22 = aT[3]+w*aT[5]; - s23 = w*aT[1]; - s1 = s13 + w2*s12 + w4*s11; - s = s23 + w2*s22 + w4*s21 + z*s1; - if (id<0) return x - x*(s); - else { - z = atanhi[id] - ((x*(s) - atanlo[id]) - x); - return (hx<0)? -z:z; - } -#endif } -weak_alias (__atan, atan) + + + /* Fix the sign of y and return */ +double __signArctan(double x,double y){ + + if (x<ZERO) return -y; + else return y; +} + + /* Final stages. Compute atan(x) by multiple precision arithmetic */ +static double atanMp(double x,const int pr[]){ + mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1; + double y1,y2; + int i,p; + +for (i=0; i<M; i++) { + p = pr[i]; + dbl_mp(x,&mpx,p); __mpatan(&mpx,&mpy,p); + dbl_mp(u9[i].d,&mpt1,p); mul(&mpy,&mpt1,&mperr,p); + add(&mpy,&mperr,&mpy1,p); sub(&mpy,&mperr,&mpy2,p); + mp_dbl(&mpy1,&y1,p); mp_dbl(&mpy2,&y2,p); + if (y1==y2) return y1; + } + return y1; /*if unpossible to do exact computing */ +} + #ifdef NO_LONG_DOUBLE -strong_alias (__atan, __atanl) -weak_alias (__atan, atanl) +weak_alias (atan, atanl) #endif |