summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/mpsqrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/mpsqrt.c')
-rw-r--r--sysdeps/ieee754/dbl-64/mpsqrt.c111
1 files changed, 0 insertions, 111 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpsqrt.c b/sysdeps/ieee754/dbl-64/mpsqrt.c
deleted file mode 100644
index 2c32490c1f..0000000000
--- a/sysdeps/ieee754/dbl-64/mpsqrt.c
+++ /dev/null
@@ -1,111 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2021 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <https://www.gnu.org/licenses/>.
- */
-/****************************************************************************/
-/*  MODULE_NAME:mpsqrt.c                                                    */
-/*                                                                          */
-/*  FUNCTION:mpsqrt                                                         */
-/*           fastiroot                                                      */
-/*                                                                          */
-/* FILES NEEDED:endian.h mpa.h mpsqrt.h                                     */
-/*              mpa.c                                                       */
-/* Multi-Precision square root function subroutine for precision p >= 4.    */
-/* The relative error is bounded by 3.501*r**(1-p), where r=2**24.          */
-/*                                                                          */
-/****************************************************************************/
-#include "endian.h"
-#include "mpa.h"
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-#include "mpsqrt.h"
-
-/****************************************************************************/
-/* Multi-Precision square root function subroutine for precision p >= 4.    */
-/* The relative error is bounded by 3.501*r**(1-p), where r=2**24.          */
-/* Routine receives two pointers to  Multi Precision numbers:               */
-/* x (left argument) and y (next argument). Routine also receives precision */
-/* p as integer. Routine computes sqrt(*x) and stores result in *y          */
-/****************************************************************************/
-
-static double fastiroot (double);
-
-void
-SECTION
-__mpsqrt (mp_no *x, mp_no *y, int p)
-{
-  int i, m, ey;
-  double dx, dy;
-  static const mp_no mphalf = {0, {1.0, HALFRAD}};
-  static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}};
-  mp_no mpxn, mpz, mpu, mpt1, mpt2;
-
-  ey = EX / 2;
-  __cpy (x, &mpxn, p);
-  mpxn.e -= (ey + ey);
-  __mp_dbl (&mpxn, &dx, p);
-  dy = fastiroot (dx);
-  __dbl_mp (dy, &mpu, p);
-  __mul (&mpxn, &mphalf, &mpz, p);
-
-  m = __mpsqrt_mp[p];
-  for (i = 0; i < m; i++)
-    {
-      __sqr (&mpu, &mpt1, p);
-      __mul (&mpt1, &mpz, &mpt2, p);
-      __sub (&mp3halfs, &mpt2, &mpt1, p);
-      __mul (&mpu, &mpt1, &mpt2, p);
-      __cpy (&mpt2, &mpu, p);
-    }
-  __mul (&mpxn, &mpu, y, p);
-  EY += ey;
-}
-
-/***********************************************************/
-/* Compute a double precision approximation for 1/sqrt(x)  */
-/* with the relative error bounded by 2**-51.              */
-/***********************************************************/
-static double
-SECTION
-fastiroot (double x)
-{
-  union
-  {
-    int i[2];
-    double d;
-  } p, q;
-  double y, z, t;
-  int n;
-  static const double c0 = 0.99674, c1 = -0.53380;
-  static const double c2 = 0.45472, c3 = -0.21553;
-
-  p.d = x;
-  p.i[HIGH_HALF] = (p.i[HIGH_HALF] & 0x3FFFFFFF) | 0x3FE00000;
-  q.d = x;
-  y = p.d;
-  z = y - 1.0;
-  n = (q.i[HIGH_HALF] - p.i[HIGH_HALF]) >> 1;
-  z = ((c3 * z + c2) * z + c1) * z + c0;	/* 2**-7         */
-  z = z * (1.5 - 0.5 * y * z * z);		/* 2**-14        */
-  p.d = z * (1.5 - 0.5 * y * z * z);		/* 2**-28        */
-  p.i[HIGH_HALF] -= n;
-  t = x * p.d;
-  return p.d * (1.5 - 0.5 * p.d * t);
-}