about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/mpa.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/mpa.c')
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c906
1 files changed, 0 insertions, 906 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
deleted file mode 100644
index 3820335172..0000000000
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ /dev/null
@@ -1,906 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/************************************************************************/
-/*  MODULE_NAME: mpa.c                                                  */
-/*                                                                      */
-/*  FUNCTIONS:                                                          */
-/*               mcr                                                    */
-/*               acr                                                    */
-/*               cpy                                                    */
-/*               norm                                                   */
-/*               denorm                                                 */
-/*               mp_dbl                                                 */
-/*               dbl_mp                                                 */
-/*               add_magnitudes                                         */
-/*               sub_magnitudes                                         */
-/*               add                                                    */
-/*               sub                                                    */
-/*               mul                                                    */
-/*               inv                                                    */
-/*               dvd                                                    */
-/*                                                                      */
-/* Arithmetic functions for multiple precision numbers.                 */
-/* Relative errors are bounded                                          */
-/************************************************************************/
-
-
-#include "endian.h"
-#include "mpa.h"
-#include <sys/param.h>
-#include <alloca.h>
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-#ifndef NO__CONST
-const mp_no __mpone = { 1, { 1.0, 1.0 } };
-const mp_no __mptwo = { 1, { 1.0, 2.0 } };
-#endif
-
-#ifndef NO___ACR
-/* Compare mantissa of two multiple precision numbers regardless of the sign
-   and exponent of the numbers.  */
-static int
-mcr (const mp_no *x, const mp_no *y, int p)
-{
-  long i;
-  long p2 = p;
-  for (i = 1; i <= p2; i++)
-    {
-      if (X[i] == Y[i])
-	continue;
-      else if (X[i] > Y[i])
-	return 1;
-      else
-	return -1;
-    }
-  return 0;
-}
-
-/* Compare the absolute values of two multiple precision numbers.  */
-int
-__acr (const mp_no *x, const mp_no *y, int p)
-{
-  long i;
-
-  if (X[0] == 0)
-    {
-      if (Y[0] == 0)
-	i = 0;
-      else
-	i = -1;
-    }
-  else if (Y[0] == 0)
-    i = 1;
-  else
-    {
-      if (EX > EY)
-	i = 1;
-      else if (EX < EY)
-	i = -1;
-      else
-	i = mcr (x, y, p);
-    }
-
-  return i;
-}
-#endif
-
-#ifndef NO___CPY
-/* Copy multiple precision number X into Y.  They could be the same
-   number.  */
-void
-__cpy (const mp_no *x, mp_no *y, int p)
-{
-  long i;
-
-  EY = EX;
-  for (i = 0; i <= p; i++)
-    Y[i] = X[i];
-}
-#endif
-
-#ifndef NO___MP_DBL
-/* Convert a multiple precision number *X into a double precision
-   number *Y, normalized case (|x| >= 2**(-1022))).  X has precision
-   P, which is positive.  */
-static void
-norm (const mp_no *x, double *y, int p)
-{
-# define R RADIXI
-  long i;
-  double c;
-  mantissa_t a, u, v, z[5];
-  if (p < 5)
-    {
-      if (p == 1)
-	c = X[1];
-      else if (p == 2)
-	c = X[1] + R * X[2];
-      else if (p == 3)
-	c = X[1] + R * (X[2] + R * X[3]);
-      else /* p == 4.  */
-	c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]);
-    }
-  else
-    {
-      for (a = 1, z[1] = X[1]; z[1] < TWO23; )
-	{
-	  a *= 2;
-	  z[1] *= 2;
-	}
-
-      for (i = 2; i < 5; i++)
-	{
-	  mantissa_store_t d, r;
-	  d = X[i] * (mantissa_store_t) a;
-	  DIV_RADIX (d, r);
-	  z[i] = r;
-	  z[i - 1] += d;
-	}
-
-      u = ALIGN_DOWN_TO (z[3], TWO19);
-      v = z[3] - u;
-
-      if (v == TWO18)
-	{
-	  if (z[4] == 0)
-	    {
-	      for (i = 5; i <= p; i++)
-		{
-		  if (X[i] == 0)
-		    continue;
-		  else
-		    {
-		      z[3] += 1;
-		      break;
-		    }
-		}
-	    }
-	  else
-	    z[3] += 1;
-	}
-
-      c = (z[1] + R * (z[2] + R * z[3])) / a;
-    }
-
-  c *= X[0];
-
-  for (i = 1; i < EX; i++)
-    c *= RADIX;
-  for (i = 1; i > EX; i--)
-    c *= RADIXI;
-
-  *y = c;
-# undef R
-}
-
-/* Convert a multiple precision number *X into a double precision
-   number *Y, Denormal case  (|x| < 2**(-1022))).  */
-static void
-denorm (const mp_no *x, double *y, int p)
-{
-  long i, k;
-  long p2 = p;
-  double c;
-  mantissa_t u, z[5];
-
-# define R RADIXI
-  if (EX < -44 || (EX == -44 && X[1] < TWO5))
-    {
-      *y = 0;
-      return;
-    }
-
-  if (p2 == 1)
-    {
-      if (EX == -42)
-	{
-	  z[1] = X[1] + TWO10;
-	  z[2] = 0;
-	  z[3] = 0;
-	  k = 3;
-	}
-      else if (EX == -43)
-	{
-	  z[1] = TWO10;
-	  z[2] = X[1];
-	  z[3] = 0;
-	  k = 2;
-	}
-      else
-	{
-	  z[1] = TWO10;
-	  z[2] = 0;
-	  z[3] = X[1];
-	  k = 1;
-	}
-    }
-  else if (p2 == 2)
-    {
-      if (EX == -42)
-	{
-	  z[1] = X[1] + TWO10;
-	  z[2] = X[2];
-	  z[3] = 0;
-	  k = 3;
-	}
-      else if (EX == -43)
-	{
-	  z[1] = TWO10;
-	  z[2] = X[1];
-	  z[3] = X[2];
-	  k = 2;
-	}
-      else
-	{
-	  z[1] = TWO10;
-	  z[2] = 0;
-	  z[3] = X[1];
-	  k = 1;
-	}
-    }
-  else
-    {
-      if (EX == -42)
-	{
-	  z[1] = X[1] + TWO10;
-	  z[2] = X[2];
-	  k = 3;
-	}
-      else if (EX == -43)
-	{
-	  z[1] = TWO10;
-	  z[2] = X[1];
-	  k = 2;
-	}
-      else
-	{
-	  z[1] = TWO10;
-	  z[2] = 0;
-	  k = 1;
-	}
-      z[3] = X[k];
-    }
-
-  u = ALIGN_DOWN_TO (z[3], TWO5);
-
-  if (u == z[3])
-    {
-      for (i = k + 1; i <= p2; i++)
-	{
-	  if (X[i] == 0)
-	    continue;
-	  else
-	    {
-	      z[3] += 1;
-	      break;
-	    }
-	}
-    }
-
-  c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10);
-
-  *y = c * TWOM1032;
-# undef R
-}
-
-/* Convert multiple precision number *X into double precision number *Y.  The
-   result is correctly rounded to the nearest/even.  */
-void
-__mp_dbl (const mp_no *x, double *y, int p)
-{
-  if (X[0] == 0)
-    {
-      *y = 0;
-      return;
-    }
-
-  if (__glibc_likely (EX > -42 || (EX == -42 && X[1] >= TWO10)))
-    norm (x, y, p);
-  else
-    denorm (x, y, p);
-}
-#endif
-
-/* Get the multiple precision equivalent of X into *Y.  If the precision is too
-   small, the result is truncated.  */
-void
-SECTION
-__dbl_mp (double x, mp_no *y, int p)
-{
-  long i, n;
-  long p2 = p;
-
-  /* Sign.  */
-  if (x == 0)
-    {
-      Y[0] = 0;
-      return;
-    }
-  else if (x > 0)
-    Y[0] = 1;
-  else
-    {
-      Y[0] = -1;
-      x = -x;
-    }
-
-  /* Exponent.  */
-  for (EY = 1; x >= RADIX; EY += 1)
-    x *= RADIXI;
-  for (; x < 1; EY -= 1)
-    x *= RADIX;
-
-  /* Digits.  */
-  n = MIN (p2, 4);
-  for (i = 1; i <= n; i++)
-    {
-      INTEGER_OF (x, Y[i]);
-      x *= RADIX;
-    }
-  for (; i <= p2; i++)
-    Y[i] = 0;
-}
-
-/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0.  The
-   sign of the sum *Z is not changed.  X and Y may overlap but not X and Z or
-   Y and Z.  No guard digit is used.  The result equals the exact sum,
-   truncated.  */
-static void
-SECTION
-add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  long i, j, k;
-  long p2 = p;
-  mantissa_t zk;
-
-  EZ = EX;
-
-  i = p2;
-  j = p2 + EY - EX;
-  k = p2 + 1;
-
-  if (__glibc_unlikely (j < 1))
-    {
-      __cpy (x, z, p);
-      return;
-    }
-
-  zk = 0;
-
-  for (; j > 0; i--, j--)
-    {
-      zk += X[i] + Y[j];
-      if (zk >= RADIX)
-	{
-	  Z[k--] = zk - RADIX;
-	  zk = 1;
-	}
-      else
-	{
-	  Z[k--] = zk;
-	  zk = 0;
-	}
-    }
-
-  for (; i > 0; i--)
-    {
-      zk += X[i];
-      if (zk >= RADIX)
-	{
-	  Z[k--] = zk - RADIX;
-	  zk = 1;
-	}
-      else
-	{
-	  Z[k--] = zk;
-	  zk = 0;
-	}
-    }
-
-  if (zk == 0)
-    {
-      for (i = 1; i <= p2; i++)
-	Z[i] = Z[i + 1];
-    }
-  else
-    {
-      Z[1] = zk;
-      EZ += 1;
-    }
-}
-
-/* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0.
-   The sign of the difference *Z is not changed.  X and Y may overlap but not X
-   and Z or Y and Z.  One guard digit is used.  The error is less than one
-   ULP.  */
-static void
-SECTION
-sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  long i, j, k;
-  long p2 = p;
-  mantissa_t zk;
-
-  EZ = EX;
-  i = p2;
-  j = p2 + EY - EX;
-  k = p2;
-
-  /* Y is too small compared to X, copy X over to the result.  */
-  if (__glibc_unlikely (j < 1))
-    {
-      __cpy (x, z, p);
-      return;
-    }
-
-  /* The relevant least significant digit in Y is non-zero, so we factor it in
-     to enhance accuracy.  */
-  if (j < p2 && Y[j + 1] > 0)
-    {
-      Z[k + 1] = RADIX - Y[j + 1];
-      zk = -1;
-    }
-  else
-    zk = Z[k + 1] = 0;
-
-  /* Subtract and borrow.  */
-  for (; j > 0; i--, j--)
-    {
-      zk += (X[i] - Y[j]);
-      if (zk < 0)
-	{
-	  Z[k--] = zk + RADIX;
-	  zk = -1;
-	}
-      else
-	{
-	  Z[k--] = zk;
-	  zk = 0;
-	}
-    }
-
-  /* We're done with digits from Y, so it's just digits in X.  */
-  for (; i > 0; i--)
-    {
-      zk += X[i];
-      if (zk < 0)
-	{
-	  Z[k--] = zk + RADIX;
-	  zk = -1;
-	}
-      else
-	{
-	  Z[k--] = zk;
-	  zk = 0;
-	}
-    }
-
-  /* Normalize.  */
-  for (i = 1; Z[i] == 0; i++)
-    ;
-  EZ = EZ - i + 1;
-  for (k = 1; i <= p2 + 1; )
-    Z[k++] = Z[i++];
-  for (; k <= p2; )
-    Z[k++] = 0;
-}
-
-/* Add *X and *Y and store the result in *Z.  X and Y may overlap, but not X
-   and Z or Y and Z.  One guard digit is used.  The error is less than one
-   ULP.  */
-void
-SECTION
-__add (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  int n;
-
-  if (X[0] == 0)
-    {
-      __cpy (y, z, p);
-      return;
-    }
-  else if (Y[0] == 0)
-    {
-      __cpy (x, z, p);
-      return;
-    }
-
-  if (X[0] == Y[0])
-    {
-      if (__acr (x, y, p) > 0)
-	{
-	  add_magnitudes (x, y, z, p);
-	  Z[0] = X[0];
-	}
-      else
-	{
-	  add_magnitudes (y, x, z, p);
-	  Z[0] = Y[0];
-	}
-    }
-  else
-    {
-      if ((n = __acr (x, y, p)) == 1)
-	{
-	  sub_magnitudes (x, y, z, p);
-	  Z[0] = X[0];
-	}
-      else if (n == -1)
-	{
-	  sub_magnitudes (y, x, z, p);
-	  Z[0] = Y[0];
-	}
-      else
-	Z[0] = 0;
-    }
-}
-
-/* Subtract *Y from *X and return the result in *Z.  X and Y may overlap but
-   not X and Z or Y and Z.  One guard digit is used.  The error is less than
-   one ULP.  */
-void
-SECTION
-__sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  int n;
-
-  if (X[0] == 0)
-    {
-      __cpy (y, z, p);
-      Z[0] = -Z[0];
-      return;
-    }
-  else if (Y[0] == 0)
-    {
-      __cpy (x, z, p);
-      return;
-    }
-
-  if (X[0] != Y[0])
-    {
-      if (__acr (x, y, p) > 0)
-	{
-	  add_magnitudes (x, y, z, p);
-	  Z[0] = X[0];
-	}
-      else
-	{
-	  add_magnitudes (y, x, z, p);
-	  Z[0] = -Y[0];
-	}
-    }
-  else
-    {
-      if ((n = __acr (x, y, p)) == 1)
-	{
-	  sub_magnitudes (x, y, z, p);
-	  Z[0] = X[0];
-	}
-      else if (n == -1)
-	{
-	  sub_magnitudes (y, x, z, p);
-	  Z[0] = -Y[0];
-	}
-      else
-	Z[0] = 0;
-    }
-}
-
-#ifndef NO__MUL
-/* Multiply *X and *Y and store result in *Z.  X and Y may overlap but not X
-   and Z or Y and Z.  For P in [1, 2, 3], the exact result is truncated to P
-   digits.  In case P > 3 the error is bounded by 1.001 ULP.  */
-void
-SECTION
-__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  long i, j, k, ip, ip2;
-  long p2 = p;
-  mantissa_store_t zk;
-  const mp_no *a;
-  mantissa_store_t *diag;
-
-  /* Is z=0?  */
-  if (__glibc_unlikely (X[0] * Y[0] == 0))
-    {
-      Z[0] = 0;
-      return;
-    }
-
-  /* We need not iterate through all X's and Y's since it's pointless to
-     multiply zeroes.  Here, both are zero...  */
-  for (ip2 = p2; ip2 > 0; ip2--)
-    if (X[ip2] != 0 || Y[ip2] != 0)
-      break;
-
-  a = X[ip2] != 0 ? y : x;
-
-  /* ... and here, at least one of them is still zero.  */
-  for (ip = ip2; ip > 0; ip--)
-    if (a->d[ip] != 0)
-      break;
-
-  /* The product looks like this for p = 3 (as an example):
-
-
-				a1    a2    a3
-		 x		b1    b2    b3
-		 -----------------------------
-			     a1*b3 a2*b3 a3*b3
-		       a1*b2 a2*b2 a3*b2
-		 a1*b1 a2*b1 a3*b1
-
-     So our K needs to ideally be P*2, but we're limiting ourselves to P + 3
-     for P >= 3.  We compute the above digits in two parts; the last P-1
-     digits and then the first P digits.  The last P-1 digits are a sum of
-     products of the input digits from P to P-k where K is 0 for the least
-     significant digit and increases as we go towards the left.  The product
-     term is of the form X[k]*X[P-k] as can be seen in the above example.
-
-     The first P digits are also a sum of products with the same product term,
-     except that the sum is from 1 to k.  This is also evident from the above
-     example.
-
-     Another thing that becomes evident is that only the most significant
-     ip+ip2 digits of the result are non-zero, where ip and ip2 are the
-     'internal precision' of the input numbers, i.e. digits after ip and ip2
-     are all 0.  */
-
-  k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
-
-  while (k > ip + ip2 + 1)
-    Z[k--] = 0;
-
-  zk = 0;
-
-  /* Precompute sums of diagonal elements so that we can directly use them
-     later.  See the next comment to know we why need them.  */
-  diag = alloca (k * sizeof (mantissa_store_t));
-  mantissa_store_t d = 0;
-  for (i = 1; i <= ip; i++)
-    {
-      d += X[i] * (mantissa_store_t) Y[i];
-      diag[i] = d;
-    }
-  while (i < k)
-    diag[i++] = d;
-
-  while (k > p2)
-    {
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-	/* We want to add this only once, but since we subtract it in the sum
-	   of products above, we add twice.  */
-	zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
-
-      for (i = k - p2, j = p2; i < j; i++, j--)
-	zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
-
-      zk -= diag[k - 1];
-
-      DIV_RADIX (zk, Z[k]);
-      k--;
-    }
-
-  /* The real deal.  Mantissa digit Z[k] is the sum of all X[i] * Y[j] where i
-     goes from 1 -> k - 1 and j goes the same range in reverse.  To reduce the
-     number of multiplications, we halve the range and if k is an even number,
-     add the diagonal element X[k/2]Y[k/2].  Through the half range, we compute
-     X[i] * Y[j] as (X[i] + X[j]) * (Y[i] + Y[j]) - X[i] * Y[i] - X[j] * Y[j].
-
-     This reduction tells us that we're summing two things, the first term
-     through the half range and the negative of the sum of the product of all
-     terms of X and Y in the full range.  i.e.
-
-     SUM(X[i] * Y[i]) for k terms.  This is precalculated above for each k in
-     a single loop so that it completes in O(n) time and can hence be directly
-     used in the loop below.  */
-  while (k > 1)
-    {
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-	/* We want to add this only once, but since we subtract it in the sum
-	   of products above, we add twice.  */
-        zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
-
-      for (i = 1, j = k - 1; i < j; i++, j--)
-	zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
-
-      zk -= diag[k - 1];
-
-      DIV_RADIX (zk, Z[k]);
-      k--;
-    }
-  Z[k] = zk;
-
-  /* Get the exponent sum into an intermediate variable.  This is a subtle
-     optimization, where given enough registers, all operations on the exponent
-     happen in registers and the result is written out only once into EZ.  */
-  int e = EX + EY;
-
-  /* Is there a carry beyond the most significant digit?  */
-  if (__glibc_unlikely (Z[1] == 0))
-    {
-      for (i = 1; i <= p2; i++)
-	Z[i] = Z[i + 1];
-      e--;
-    }
-
-  EZ = e;
-  Z[0] = X[0] * Y[0];
-}
-#endif
-
-#ifndef NO__SQR
-/* Square *X and store result in *Y.  X and Y may not overlap.  For P in
-   [1, 2, 3], the exact result is truncated to P digits.  In case P > 3 the
-   error is bounded by 1.001 ULP.  This is a faster special case of
-   multiplication.  */
-void
-SECTION
-__sqr (const mp_no *x, mp_no *y, int p)
-{
-  long i, j, k, ip;
-  mantissa_store_t yk;
-
-  /* Is z=0?  */
-  if (__glibc_unlikely (X[0] == 0))
-    {
-      Y[0] = 0;
-      return;
-    }
-
-  /* We need not iterate through all X's since it's pointless to
-     multiply zeroes.  */
-  for (ip = p; ip > 0; ip--)
-    if (X[ip] != 0)
-      break;
-
-  k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
-
-  while (k > 2 * ip + 1)
-    Y[k--] = 0;
-
-  yk = 0;
-
-  while (k > p)
-    {
-      mantissa_store_t yk2 = 0;
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-	yk += X[lim] * (mantissa_store_t) X[lim];
-
-      /* In __mul, this loop (and the one within the next while loop) run
-         between a range to calculate the mantissa as follows:
-
-         Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
-		+ X[n] * Y[k]
-
-         For X == Y, we can get away with summing halfway and doubling the
-	 result.  For cases where the range size is even, the mid-point needs
-	 to be added separately (above).  */
-      for (i = k - p, j = p; i < j; i++, j--)
-	yk2 += X[i] * (mantissa_store_t) X[j];
-
-      yk += 2 * yk2;
-
-      DIV_RADIX (yk, Y[k]);
-      k--;
-    }
-
-  while (k > 1)
-    {
-      mantissa_store_t yk2 = 0;
-      long lim = k / 2;
-
-      if (k % 2 == 0)
-	yk += X[lim] * (mantissa_store_t) X[lim];
-
-      /* Likewise for this loop.  */
-      for (i = 1, j = k - 1; i < j; i++, j--)
-	yk2 += X[i] * (mantissa_store_t) X[j];
-
-      yk += 2 * yk2;
-
-      DIV_RADIX (yk, Y[k]);
-      k--;
-    }
-  Y[k] = yk;
-
-  /* Squares are always positive.  */
-  Y[0] = 1;
-
-  /* Get the exponent sum into an intermediate variable.  This is a subtle
-     optimization, where given enough registers, all operations on the exponent
-     happen in registers and the result is written out only once into EZ.  */
-  int e = EX * 2;
-
-  /* Is there a carry beyond the most significant digit?  */
-  if (__glibc_unlikely (Y[1] == 0))
-    {
-      for (i = 1; i <= p; i++)
-	Y[i] = Y[i + 1];
-      e--;
-    }
-
-  EY = e;
-}
-#endif
-
-/* Invert *X and store in *Y.  Relative error bound:
-   - For P = 2: 1.001 * R ^ (1 - P)
-   - For P = 3: 1.063 * R ^ (1 - P)
-   - For P > 3: 2.001 * R ^ (1 - P)
-
-   *X = 0 is not permissible.  */
-static void
-SECTION
-__inv (const mp_no *x, mp_no *y, int p)
-{
-  long i;
-  double t;
-  mp_no z, w;
-  static const int np1[] =
-    { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
-    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
-  };
-
-  __cpy (x, &z, p);
-  z.e = 0;
-  __mp_dbl (&z, &t, p);
-  t = 1 / t;
-  __dbl_mp (t, y, p);
-  EY -= EX;
-
-  for (i = 0; i < np1[p]; i++)
-    {
-      __cpy (y, &w, p);
-      __mul (x, &w, y, p);
-      __sub (&__mptwo, y, &z, p);
-      __mul (&w, &z, y, p);
-    }
-}
-
-/* Divide *X by *Y and store result in *Z.  X and Y may overlap but not X and Z
-   or Y and Z.  Relative error bound:
-   - For P = 2: 2.001 * R ^ (1 - P)
-   - For P = 3: 2.063 * R ^ (1 - P)
-   - For P > 3: 3.001 * R ^ (1 - P)
-
-   *X = 0 is not permissible.  */
-void
-SECTION
-__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
-  mp_no w;
-
-  if (X[0] == 0)
-    Z[0] = 0;
-  else
-    {
-      __inv (y, &w, p);
-      __mul (x, &w, z, p);
-    }
-}