diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log2.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log2.c | 240 |
1 files changed, 124 insertions, 116 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log2.c b/sysdeps/ieee754/dbl-64/e_log2.c index e4a6aff9a3..916eb466f8 100644 --- a/sysdeps/ieee754/dbl-64/e_log2.c +++ b/sysdeps/ieee754/dbl-64/e_log2.c @@ -1,133 +1,141 @@ -/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ +/* Double-precision log2(x) function. + Copyright (C) 2018 Free Software Foundation, Inc. + This file is part of the GNU C Library. -/* __ieee754_log2(x) - * Return the logarithm to base 2 of x - * - * Method : - * 1. Argument Reduction: find k and f such that - * x = 2^k * (1+f), - * where sqrt(2)/2 < 1+f < sqrt(2) . - * - * 2. Approximation of log(1+f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s - * (the values of Lg1 to Lg7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lg1*s +...+Lg7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log(1+f) = f - s*(f - R) (if f is not too large) - * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) - * - * 3. Finally, log(x) = k + log(1+f). - * = k+(f-(hfsq-(s*(hfsq+R)))) - * - * Special cases: - * log2(x) is NaN with signal if x < 0 (including -INF) ; - * log2(+INF) is +INF; log(0) is -INF with signal; - * log2(NaN) is that NaN with no signal. - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ #include <math.h> -#include <math_private.h> -#include <fix-int-fp-convert-zero.h> +#include <stdint.h> +#include "math_config.h" -static const double ln2 = 0.69314718055994530942; -static const double two54 = 1.80143985094819840000e+16; /* 43500000 00000000 */ -static const double Lg1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ -static const double Lg2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ -static const double Lg3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ -static const double Lg4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ -static const double Lg5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ -static const double Lg6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ -static const double Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ +#define T __log2_data.tab +#define T2 __log2_data.tab2 +#define B __log2_data.poly1 +#define A __log2_data.poly +#define InvLn2hi __log2_data.invln2hi +#define InvLn2lo __log2_data.invln2lo +#define N (1 << LOG2_TABLE_BITS) +#define OFF 0x3fe6000000000000 -static const double zero = 0.0; +/* Top 16 bits of a double. */ +static inline uint32_t +top16 (double x) +{ + return asuint64 (x) >> 48; +} double __ieee754_log2 (double x) { - double hfsq, f, s, z, R, w, t1, t2, dk; - int32_t k, hx, i, j; - uint32_t lx; + /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ + double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; + uint64_t ix, iz, tmp; + uint32_t top; + int k, i; - EXTRACT_WORDS (hx, lx, x); + ix = asuint64 (x); + top = top16 (x); - k = 0; - if (hx < 0x00100000) - { /* x < 2**-1022 */ - if (__glibc_unlikely (((hx & 0x7fffffff) | lx) == 0)) - return -two54 / fabs (x); /* log(+-0)=-inf */ - if (__glibc_unlikely (hx < 0)) - return (x - x) / (x - x); /* log(-#) = NaN */ - k -= 54; - x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD (hx, x); - } - if (__glibc_unlikely (hx >= 0x7ff00000)) - return x + x; - k += (hx >> 20) - 1023; - hx &= 0x000fffff; - i = (hx + 0x95f64) & 0x100000; - SET_HIGH_WORD (x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ - k += (i >> 20); - dk = (double) k; - f = x - 1.0; - if ((0x000fffff & (2 + hx)) < 3) - { /* |f| < 2**-20 */ - if (f == zero) - { - if (FIX_INT_FP_CONVERT_ZERO && dk == 0.0) - dk = 0.0; - return dk; - } - R = f * f * (0.5 - 0.33333333333333333 * f); - return dk - (R - f) / ln2; - } - s = f / (2.0 + f); - z = s * s; - i = hx - 0x6147a; - w = z * z; - j = 0x6b851 - hx; - t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); - t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); - i |= j; - R = t2 + t1; - if (i > 0) +#define LO asuint64 (1.0 - 0x1.5b51p-5) +#define HI asuint64 (1.0 + 0x1.6ab2p-5) + if (__glibc_unlikely (ix - LO < HI - LO)) { - hfsq = 0.5 * f * f; - return dk - ((hfsq - (s * (hfsq + R))) - f) / ln2; + /* Handle close to 1.0 inputs separately. */ + /* Fix sign of zero with downward rounding when x==1. */ + if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0))) + return 0; + r = x - 1.0; +#ifdef __FP_FAST_FMA + hi = r * InvLn2hi; + lo = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -hi); +#else + double_t rhi, rlo; + rhi = asdouble (asuint64 (r) & -1ULL << 32); + rlo = r - rhi; + hi = rhi * InvLn2hi; + lo = rlo * InvLn2hi + r * InvLn2lo; +#endif + r2 = r * r; /* rounding error: 0x1p-62. */ + r4 = r2 * r2; + /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ + p = r2 * (B[0] + r * B[1]); + y = hi + p; + lo += hi - y + p; + lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) + + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); + y += lo; + return y; } - else + if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) { - return dk - ((s * (f - R)) - f) / ln2; + /* x < 0x1p-1022 or inf or nan. */ + if (ix * 2 == 0) + return __math_divzero (1); + if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ + return x; + if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) + return __math_invalid (x); + /* x is subnormal, normalize it. */ + ix = asuint64 (x * 0x1p52); + ix -= 52ULL << 52; } -} + /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + tmp = ix - OFF; + i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; + k = (int64_t) tmp >> 52; /* arithmetic shift */ + iz = ix - (tmp & 0xfffULL << 52); + invc = T[i].invc; + logc = T[i].logc; + z = asdouble (iz); + kd = (double_t) k; + + /* log2(x) = log2(z/c) + log2(c) + k. */ + /* r ~= z/c - 1, |r| < 1/(2*N). */ +#ifdef __FP_FAST_FMA + /* rounding error: 0x1p-55/N. */ + r = __builtin_fma (z, invc, -1.0); + t1 = r * InvLn2hi; + t2 = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -t1); +#else + double_t rhi, rlo; + /* rounding error: 0x1p-55/N + 0x1p-65. */ + r = (z - T2[i].chi - T2[i].clo) * invc; + rhi = asdouble (asuint64 (r) & -1ULL << 32); + rlo = r - rhi; + t1 = rhi * InvLn2hi; + t2 = rlo * InvLn2hi + r * InvLn2lo; +#endif + + /* hi + lo = r/ln2 + log2(c) + k. */ + t3 = kd + logc; + hi = t3 + t1; + lo = t3 - hi + t1 + t2; + + /* log2(r+1) = r/ln2 + r^2*poly(r). */ + /* Evaluation is optimized assuming superscalar pipelined execution. */ + r2 = r * r; /* rounding error: 0x1p-54/N^2. */ + r4 = r2 * r2; + /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). + ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ + p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); + y = lo + r2 * p + hi; + return y; +} +#ifndef __ieee754_log2 strong_alias (__ieee754_log2, __log2_finite) +#endif |