summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_log.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c348
1 files changed, 190 insertions, 158 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
index 851bd30198..e55d74e561 100644
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -1,165 +1,197 @@
-/* @(#)e_log.c 5.1 93/09/24 */
 /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
  *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
-   for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
-#endif
-
-/* __ieee754_log(x)
- * Return the logarithm of x
- *
- * Method :
- *   1. Argument Reduction: find k and f such that
- *			x = 2^k * (1+f),
- *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
- *
- *   2. Approximation of log(1+f).
- *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *	     	 = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate
- * 	a polynomial of degree 14 to approximate R The maximum error
- *	of this polynomial approximation is bounded by 2**-58.45. In
- *	other words,
- *		        2      4      6      8      10      12      14
- *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
- *  	(the values of Lg1 to Lg7 are listed in the program)
- *	and
- *	    |      2          14          |     -58.45
- *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
- *	    |                             |
- *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *	In order to guarantee error in log below 1ulp, we compute log
- *	by
- *		log(1+f) = f - s*(f - R)	(if f is not too large)
- *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
  *
- *	3. Finally,  log(x) = k*ln2 + log(1+f).
- *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *	   Here ln2 is split into two floating point number:
- *			ln2_hi + ln2_lo,
- *	   where n*ln2_hi is always exact for |n| < 2000.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
  *
- * Special cases:
- *	log(x) is NaN with signal if x < 0 (including -INF) ;
- *	log(+INF) is +INF; log(0) is -INF with signal;
- *	log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- *	according to an error analysis, the error is always less than
- *	1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  */
+/*********************************************************************/
+/*                                                                   */
+/*      MODULE_NAME:ulog.h                                           */
+/*                                                                   */
+/*      FUNCTION:ulog                                                */
+/*                                                                   */
+/*      FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h           */
+/*                    mpexp.c mplog.c mpa.c                          */
+/*                    ulog.tbl                                       */
+/*                                                                   */
+/* An ultimate log routine. Given an IEEE double machine number x    */
+/* it computes the correctly rounded (to nearest) value of log(x).   */
+/* Assumption: Machine arithmetic operations are performed in        */
+/* round to nearest mode of IEEE 754 standard.                       */
+/*                                                                   */
+/*********************************************************************/
+
+
+#include "endian.h"
+#include "dla.h"
+#include "mpa.h"
+#include "MathLib.h"
+void __mplog(mp_no *, mp_no *, int);
+
+/*********************************************************************/
+/* An ultimate log routine. Given an IEEE double machine number x     */
+/* it computes the correctly rounded (to nearest) value of log(x).   */
+/*********************************************************************/
+double __ieee754_log(double x) {
+#define M 4
+  static const int pr[M]={8,10,18,32};
+  int i,j,k,n,ux,dx,p;
+  double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,
+         sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,
+         t1,t2,t3,t4,t5,t6,t7,t8,t,ra,rb,ww,
+         a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;
+  number num;
+  mp_no mpx,mpy,mpy1,mpy2,mperr;
+
+#include "ulog.tbl"
+#include "ulog.h"
+
+  /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
+
+  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];
+  n=0;
+  if (ux < 0x00100000) {
+    if (((ux & 0x7fffffff) | dx) == 0)  return MHALF/ZERO; /* return -INF */
+    if (ux < 0) return (x-x)/ZERO;                         /* return NaN  */
+    n -= 54;    x *= two54.d;                              /* scale x     */
+    num.d = x;
+  }
+  if (ux >= 0x7ff00000) return x+x;                        /* INF or NaN  */
+
+  /* Regular values of x */
+
+  w = x-ONE;
+  if (ABS(w) > U03) { goto case_03; }
+
+
+  /*--- Stage I, the case abs(x-1) < 0.03 */
+
+  t8 = MHALF*w;
+  EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)
+  EADD(w,a,b,bb)
+
+  /* Evaluate polynomial II */
+  polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+
+          w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;
+  c = (aa+bb)+polII;
+
+  /* End stage I, case abs(x-1) < 0.03 */
+  if ((y=b+(c+b*E2)) == b+(c-b*E2))  return y;
+
+  /*--- Stage II, the case abs(x-1) < 0.03 */
+
+  a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+
+            w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));
+  EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)
+  ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)
+  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(w,ZERO,    s3,ss3, b, bb,t1,t2)
+
+  /* End stage II, case abs(x-1) < 0.03 */
+  if ((y=b+(bb+b*E4)) == b+(bb-b*E4))  return y;
+  goto stage_n;
+
+  /*--- Stage I, the case abs(x-1) > 0.03 */
+  case_03:
+
+  /* Find n,u such that x = u*2**n,   1/sqrt(2) < u < sqrt(2)  */
+  n += (num.i[HIGH_HALF] >> 20) - 1023;
+  num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
+  if (num.d > SQRT_2) { num.d *= HALF;  n++; }
+  u = num.d;  dbl_n = (double) n;
+
+  /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
+  num.d += h1.d;
+  i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
+
+  /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
+  num.d = u*Iu[i].d + h2.d;
+  j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
+
+  /* Compute w=(u-ui*vj)/(ui*vj) */
+  p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);
+  q=u-p0;   r0=Iu[i].d*Iv[j].d;   w=q*r0;
+
+  /* Evaluate polynomial I */
+  polI = w+(a2.d+a3.d*w)*w*w;
+
+  /* Add up everything */
+  nln2a = dbl_n*LN2A;
+  luai  = Lu[i][0].d;   lubi  = Lu[i][1].d;
+  lvaj  = Lv[j][0].d;   lvbj  = Lv[j][1].d;
+  EADD(luai,lvaj,sij,ssij)
+  EADD(nln2a,sij,A  ,ttij)
+  B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;
+  B  = polI+B0;
+
+  /* End stage I, case abs(x-1) >= 0.03 */
+  if ((y=A+(B+E1)) == A+(B-E1))  return y;
+
+
+  /*--- Stage II, the case abs(x-1) > 0.03 */
+
+  /* Improve the accuracy of r0 */
+  EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)
+  t=r0*((ONE-sa)-sb);
+  EADD(r0,t,ra,rb)
+
+  /* Compute w */
+  MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)
+
+  EADD(A,B0,a0,aa0)
+
+  /* Evaluate polynomial III */
+  s1 = (c3.d+(c4.d+c5.d*w)*w)*w;
+  EADD(c2.d,s1,s2,ss2)
+  MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
+  MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
+  ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)
+  ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)
+
+  /* End stage II, case abs(x-1) >= 0.03 */
+  if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;
+
+
+  /* Final stages. Use multi-precision arithmetic. */
+  stage_n:
 
-#include "math.h"
-#include "math_private.h"
-#define half Lg[8]
-#define two Lg[9]
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
-ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
-two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
- Lg[] = {0.0,
- 6.666666666666735130e-01,  /* 3FE55555 55555593 */
- 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
- 2.857142874366239149e-01,  /* 3FD24924 94229359 */
- 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
- 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
- 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
- 1.479819860511658591e-01,  /* 3FC2F112 DF3E5244 */
- 0.5,
- 2.0};
-#ifdef __STDC__
-static const double zero   =  0.0;
-#else
-static double zero   =  0.0;
-#endif
-
-#ifdef __STDC__
-	double __ieee754_log(double x)
-#else
-	double __ieee754_log(x)
-	double x;
-#endif
-{
-	double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
-#ifdef DO_NOT_USE_THIS
-	double t1,t2;
-#endif
-	int32_t k,hx,i,j;
-	u_int32_t lx;
-
-	EXTRACT_WORDS(hx,lx,x);
-
-	k=0;
-	if (hx < 0x00100000) {			/* x < 2**-1022  */
-	    if (((hx&0x7fffffff)|lx)==0)
-		return -two54/(x-x);		/* log(+-0)=-inf */
-	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
-	    k -= 54; x *= two54; /* subnormal number, scale up x */
-	    GET_HIGH_WORD(hx,x);
-	}
-	if (hx >= 0x7ff00000) return x+x;
-	k += (hx>>20)-1023;
-	hx &= 0x000fffff;
-	i = (hx+0x95f64)&0x100000;
-	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
-	k += (i>>20);
-	f = x-1.0;
-	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
-	    if(f==zero) {
-	      if(k==0) return zero;  else {dk=(double)k;
-					   return dk*ln2_hi+dk*ln2_lo;}
-	    }
-	    R = f*f*(half-0.33333333333333333*f);
-	    if(k==0) return f-R; else {dk=(double)k;
-	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
-	}
- 	s = f/(two+f);
-	dk = (double)k;
-	z = s*s;
-	i = hx-0x6147a;
-	w = z*z;
-	j = 0x6b851-hx;
-#ifdef DO_NOT_USE_THIS
-	t1= w*(Lg2+w*(Lg4+w*Lg6));
-	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2+t1;
-#else
-	t21 = Lg[5]+w*Lg[7]; w2=w*w;
-	t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
-	t11 = Lg[4]+w*Lg[6];
-	t12 = w*Lg[2];
-	R = t12 + w2*t11 + z*t22 + zw2*t21;
-#endif
-	i |= j;
-	if(i>0) {
-	    hfsq=0.5*f*f;
-	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
-		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
-	} else {
-	    if(k==0) return f-s*(f-R); else
-		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
-	}
+  for (i=0; i<M; i++) {
+    p = pr[i];
+    dbl_mp(x,&mpx,p);  dbl_mp(y,&mpy,p);
+    __mplog(&mpx,&mpy,p);
+    dbl_mp(e[i].d,&mperr,p);
+    add(&mpy,&mperr,&mpy1,p);  sub(&mpy,&mperr,&mpy2,p);
+    mp_dbl(&mpy1,&y1,p);       mp_dbl(&mpy2,&y2,p);
+    if (y1==y2)   return y1;
+  }
+  return y1;
 }