diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log.c | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c new file mode 100644 index 0000000000..851bd30198 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/e_log.c @@ -0,0 +1,165 @@ +/* @(#)e_log.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, + for performance improvement on pipelined processors. +*/ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; +#endif + +/* __ieee754_log(x) + * Return the logarithm of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" +#define half Lg[8] +#define two Lg[9] +#ifdef __STDC__ +static const double +#else +static double +#endif +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ +two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ + Lg[] = {0.0, + 6.666666666666735130e-01, /* 3FE55555 55555593 */ + 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ + 2.857142874366239149e-01, /* 3FD24924 94229359 */ + 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ + 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ + 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ + 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */ + 0.5, + 2.0}; +#ifdef __STDC__ +static const double zero = 0.0; +#else +static double zero = 0.0; +#endif + +#ifdef __STDC__ + double __ieee754_log(double x) +#else + double __ieee754_log(x) + double x; +#endif +{ + double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2; +#ifdef DO_NOT_USE_THIS + double t1,t2; +#endif + int32_t k,hx,i,j; + u_int32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/(x-x); /* log(+-0)=-inf */ + if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + hx &= 0x000fffff; + i = (hx+0x95f64)&0x100000; + SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ + k += (i>>20); + f = x-1.0; + if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ + if(f==zero) { + if(k==0) return zero; else {dk=(double)k; + return dk*ln2_hi+dk*ln2_lo;} + } + R = f*f*(half-0.33333333333333333*f); + if(k==0) return f-R; else {dk=(double)k; + return dk*ln2_hi-((R-dk*ln2_lo)-f);} + } + s = f/(two+f); + dk = (double)k; + z = s*s; + i = hx-0x6147a; + w = z*z; + j = 0x6b851-hx; +#ifdef DO_NOT_USE_THIS + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + R = t2+t1; +#else + t21 = Lg[5]+w*Lg[7]; w2=w*w; + t22 = Lg[1]+w*Lg[3]; zw2=z*w2; + t11 = Lg[4]+w*Lg[6]; + t12 = w*Lg[2]; + R = t12 + w2*t11 + z*t22 + zw2*t21; +#endif + i |= j; + if(i>0) { + hfsq=0.5*f*f; + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); + } else { + if(k==0) return f-s*(f-R); else + return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + } +} |