about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_jn.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_jn.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_jn.c347
1 files changed, 0 insertions, 347 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_jn.c b/sysdeps/ieee754/dbl-64/e_jn.c
deleted file mode 100644
index 3fecf82f10..0000000000
--- a/sysdeps/ieee754/dbl-64/e_jn.c
+++ /dev/null
@@ -1,347 +0,0 @@
-/* @(#)e_jn.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_jn(n, x), __ieee754_yn(n, x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- *	y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
- *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- *	For n=0, j0(x) is called,
- *	for n=1, j1(x) is called,
- *	for n<x, forward recursion us used starting
- *	from values of j0(x) and j1(x).
- *	for n>x, a continued fraction approximation to
- *	j(n,x)/j(n-1,x) is evaluated and then backward
- *	recursion is used starting from a supposed value
- *	for j(n,x). The resulting value of j(0,x) is
- *	compared with the actual value to correct the
- *	supposed value of j(n,x).
- *
- *	yn(n,x) is similar in all respects, except
- *	that forward recursion is used for all
- *	values of n>1.
- *
- */
-
-#include <errno.h>
-#include <float.h>
-#include <math.h>
-#include <math_private.h>
-
-static const double
-  invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-  two = 2.00000000000000000000e+00,  /* 0x40000000, 0x00000000 */
-  one = 1.00000000000000000000e+00;  /* 0x3FF00000, 0x00000000 */
-
-static const double zero = 0.00000000000000000000e+00;
-
-double
-__ieee754_jn (int n, double x)
-{
-  int32_t i, hx, ix, lx, sgn;
-  double a, b, temp, di, ret;
-  double z, w;
-
-  /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
-   * Thus, J(-n,x) = J(n,-x)
-   */
-  EXTRACT_WORDS (hx, lx, x);
-  ix = 0x7fffffff & hx;
-  /* if J(n,NaN) is NaN */
-  if (__glibc_unlikely ((ix | ((u_int32_t) (lx | -lx)) >> 31) > 0x7ff00000))
-    return x + x;
-  if (n < 0)
-    {
-      n = -n;
-      x = -x;
-      hx ^= 0x80000000;
-    }
-  if (n == 0)
-    return (__ieee754_j0 (x));
-  if (n == 1)
-    return (__ieee754_j1 (x));
-  sgn = (n & 1) & (hx >> 31);   /* even n -- 0, odd n -- sign(x) */
-  x = fabs (x);
-  {
-    SET_RESTORE_ROUND (FE_TONEAREST);
-    if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
-      /* if x is 0 or inf */
-      return sgn == 1 ? -zero : zero;
-    else if ((double) n <= x)
-      {
-	/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
-	if (ix >= 0x52D00000)      /* x > 2**302 */
-	  { /* (x >> n**2)
-			 *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-			 *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-			 *	    Let s=sin(x), c=cos(x),
-			 *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-			 *
-			 *		   n	sin(xn)*sqt2	cos(xn)*sqt2
-			 *		----------------------------------
-			 *		   0	 s-c		 c+s
-			 *		   1	-s-c		-c+s
-			 *		   2	-s+c		-c-s
-			 *		   3	 s+c		 c-s
-			 */
-	    double s;
-	    double c;
-	    __sincos (x, &s, &c);
-	    switch (n & 3)
-	      {
-	      case 0: temp = c + s; break;
-	      case 1: temp = -c + s; break;
-	      case 2: temp = -c - s; break;
-	      case 3: temp = c - s; break;
-	      }
-	    b = invsqrtpi * temp / __ieee754_sqrt (x);
-	  }
-	else
-	  {
-	    a = __ieee754_j0 (x);
-	    b = __ieee754_j1 (x);
-	    for (i = 1; i < n; i++)
-	      {
-		temp = b;
-		b = b * ((double) (i + i) / x) - a; /* avoid underflow */
-		a = temp;
-	      }
-	  }
-      }
-    else
-      {
-	if (ix < 0x3e100000)      /* x < 2**-29 */
-	  { /* x is tiny, return the first Taylor expansion of J(n,x)
-			 * J(n,x) = 1/n!*(x/2)^n  - ...
-			 */
-	    if (n > 33)           /* underflow */
-	      b = zero;
-	    else
-	      {
-		temp = x * 0.5; b = temp;
-		for (a = one, i = 2; i <= n; i++)
-		  {
-		    a *= (double) i;              /* a = n! */
-		    b *= temp;                    /* b = (x/2)^n */
-		  }
-		b = b / a;
-	      }
-	  }
-	else
-	  {
-	    /* use backward recurrence */
-	    /*			x      x^2      x^2
-	     *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
-	     *			2n  - 2(n+1) - 2(n+2)
-	     *
-	     *			1      1        1
-	     *  (for large x)   =  ----  ------   ------   .....
-	     *			2n   2(n+1)   2(n+2)
-	     *			-- - ------ - ------ -
-	     *			 x     x         x
-	     *
-	     * Let w = 2n/x and h=2/x, then the above quotient
-	     * is equal to the continued fraction:
-	     *		    1
-	     *	= -----------------------
-	     *		       1
-	     *	   w - -----------------
-	     *			  1
-	     *		w+h - ---------
-	     *		       w+2h - ...
-	     *
-	     * To determine how many terms needed, let
-	     * Q(0) = w, Q(1) = w(w+h) - 1,
-	     * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-	     * When Q(k) > 1e4	good for single
-	     * When Q(k) > 1e9	good for double
-	     * When Q(k) > 1e17	good for quadruple
-	     */
-	    /* determine k */
-	    double t, v;
-	    double q0, q1, h, tmp; int32_t k, m;
-	    w = (n + n) / (double) x; h = 2.0 / (double) x;
-	    q0 = w;  z = w + h; q1 = w * z - 1.0; k = 1;
-	    while (q1 < 1.0e9)
-	      {
-		k += 1; z += h;
-		tmp = z * q1 - q0;
-		q0 = q1;
-		q1 = tmp;
-	      }
-	    m = n + n;
-	    for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
-	      t = one / (i / x - t);
-	    a = t;
-	    b = one;
-	    /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
-	     *  Hence, if n*(log(2n/x)) > ...
-	     *  single 8.8722839355e+01
-	     *  double 7.09782712893383973096e+02
-	     *  long double 1.1356523406294143949491931077970765006170e+04
-	     *  then recurrent value may overflow and the result is
-	     *  likely underflow to zero
-	     */
-	    tmp = n;
-	    v = two / x;
-	    tmp = tmp * __ieee754_log (fabs (v * tmp));
-	    if (tmp < 7.09782712893383973096e+02)
-	      {
-		for (i = n - 1, di = (double) (i + i); i > 0; i--)
-		  {
-		    temp = b;
-		    b *= di;
-		    b = b / x - a;
-		    a = temp;
-		    di -= two;
-		  }
-	      }
-	    else
-	      {
-		for (i = n - 1, di = (double) (i + i); i > 0; i--)
-		  {
-		    temp = b;
-		    b *= di;
-		    b = b / x - a;
-		    a = temp;
-		    di -= two;
-		    /* scale b to avoid spurious overflow */
-		    if (b > 1e100)
-		      {
-			a /= b;
-			t /= b;
-			b = one;
-		      }
-		  }
-	      }
-	    /* j0() and j1() suffer enormous loss of precision at and
-	     * near zero; however, we know that their zero points never
-	     * coincide, so just choose the one further away from zero.
-	     */
-	    z = __ieee754_j0 (x);
-	    w = __ieee754_j1 (x);
-	    if (fabs (z) >= fabs (w))
-	      b = (t * z / b);
-	    else
-	      b = (t * w / a);
-	  }
-      }
-    if (sgn == 1)
-      ret = -b;
-    else
-      ret = b;
-    ret = math_narrow_eval (ret);
-  }
-  if (ret == 0)
-    {
-      ret = math_narrow_eval (__copysign (DBL_MIN, ret) * DBL_MIN);
-      __set_errno (ERANGE);
-    }
-  else
-    math_check_force_underflow (ret);
-  return ret;
-}
-strong_alias (__ieee754_jn, __jn_finite)
-
-double
-__ieee754_yn (int n, double x)
-{
-  int32_t i, hx, ix, lx;
-  int32_t sign;
-  double a, b, temp, ret;
-
-  EXTRACT_WORDS (hx, lx, x);
-  ix = 0x7fffffff & hx;
-  /* if Y(n,NaN) is NaN */
-  if (__glibc_unlikely ((ix | ((u_int32_t) (lx | -lx)) >> 31) > 0x7ff00000))
-    return x + x;
-  if (__glibc_unlikely ((ix | lx) == 0))
-    return -HUGE_VAL + x;
-  /* -inf and overflow exception.  */;
-  if (__glibc_unlikely (hx < 0))
-    return zero / (zero * x);
-  sign = 1;
-  if (n < 0)
-    {
-      n = -n;
-      sign = 1 - ((n & 1) << 1);
-    }
-  if (n == 0)
-    return (__ieee754_y0 (x));
-  {
-    SET_RESTORE_ROUND (FE_TONEAREST);
-    if (n == 1)
-      {
-	ret = sign * __ieee754_y1 (x);
-	goto out;
-      }
-    if (__glibc_unlikely (ix == 0x7ff00000))
-      return zero;
-    if (ix >= 0x52D00000)      /* x > 2**302 */
-      { /* (x >> n**2)
-	 *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-	 *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-	 *	    Let s=sin(x), c=cos(x),
-	 *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-	 *
-	 *		   n	sin(xn)*sqt2	cos(xn)*sqt2
-	 *		----------------------------------
-	 *		   0	 s-c		 c+s
-	 *		   1	-s-c		-c+s
-	 *		   2	-s+c		-c-s
-	 *		   3	 s+c		 c-s
-	 */
-	double c;
-	double s;
-	__sincos (x, &s, &c);
-	switch (n & 3)
-	  {
-	  case 0: temp = s - c; break;
-	  case 1: temp = -s - c; break;
-	  case 2: temp = -s + c; break;
-	  case 3: temp = s + c; break;
-	  }
-	b = invsqrtpi * temp / __ieee754_sqrt (x);
-      }
-    else
-      {
-	u_int32_t high;
-	a = __ieee754_y0 (x);
-	b = __ieee754_y1 (x);
-	/* quit if b is -inf */
-	GET_HIGH_WORD (high, b);
-	for (i = 1; i < n && high != 0xfff00000; i++)
-	  {
-	    temp = b;
-	    b = ((double) (i + i) / x) * b - a;
-	    GET_HIGH_WORD (high, b);
-	    a = temp;
-	  }
-	/* If B is +-Inf, set up errno accordingly.  */
-	if (!isfinite (b))
-	  __set_errno (ERANGE);
-      }
-    if (sign > 0)
-      ret = b;
-    else
-      ret = -b;
-  }
- out:
-  if (isinf (ret))
-    ret = __copysign (DBL_MAX, ret) * DBL_MAX;
-  return ret;
-}
-strong_alias (__ieee754_yn, __yn_finite)