diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_j1.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_j1.c | 255 |
1 files changed, 73 insertions, 182 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_j1.c b/sysdeps/ieee754/dbl-64/e_j1.c index 8a3b2ffd19..fdc6b5b896 100644 --- a/sysdeps/ieee754/dbl-64/e_j1.c +++ b/sysdeps/ieee754/dbl-64/e_j1.c @@ -13,10 +13,6 @@ for performance improvement on pipelined processors. */ -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $"; -#endif - /* __ieee754_j1(x), __ieee754_y1(x) * Bessel function of the first and second kinds of order zero. * Method -- j1(x): @@ -26,17 +22,17 @@ static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $"; * j1(x) = x/2 + x*z*R0/S0, where z = x*x; * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) * for x in (2,inf) - * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) * as follow: * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) * = -1/sqrt(2) * (sin(x) + cos(x)) - * (To avoid cancellation, use + * (To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one.) + * to compute the worse one.) * * 3 Special cases * j1(nan)= nan @@ -57,25 +53,17 @@ static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $"; * Note: For tiny x, 1/x dominate y1 and hence * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) * 3. For x>=2. - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) * by method mentioned above. */ #include "math.h" #include "math_private.h" -#ifdef __STDC__ static double pone(double), qone(double); -#else -static double pone(), qone(); -#endif -#ifdef __STDC__ static const double -#else -static double -#endif huge = 1e300, one = 1.0, invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ @@ -91,25 +79,17 @@ S[] = {0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ 1.23542274426137913908e-11}; /* 0x3DAB2ACF, 0xCFB97ED8 */ -#ifdef __STDC__ static const double zero = 0.0; -#else -static double zero = 0.0; -#endif -#ifdef __STDC__ - double __ieee754_j1(double x) -#else - double __ieee754_j1(x) - double x; -#endif +double +__ieee754_j1(double x) { double z, s,c,ss,cc,r,u,v,y,r1,r2,s1,s2,s3,z2,z4; int32_t hx,ix; GET_HIGH_WORD(hx,x); ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return one/x; + if(__builtin_expect(ix>=0x7ff00000, 0)) return one/x; y = fabs(x); if(ix >= 0x40000000) { /* |x| >= 2.0 */ __sincos (y, &s, &c); @@ -118,7 +98,7 @@ static double zero = 0.0; if(ix<0x7fe00000) { /* make sure y+y not overflow */ z = __cos(y+y); if ((s*c)>zero) cc = z/ss; - else ss = z/cc; + else ss = z/cc; } /* * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) @@ -130,9 +110,9 @@ static double zero = 0.0; z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y); } if(hx<0) return -z; - else return z; + else return z; } - if(ix<0x3e400000) { /* |x|<2**-27 */ + if(__builtin_expect(ix<0x3e400000, 0)) { /* |x|<2**-27 */ if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ } z = x*x; @@ -144,7 +124,7 @@ static double zero = 0.0; r1 = z*R[0]; z2=z*z; r2 = R[1]+z*R[2]; z4=z2*z2; r = r1 + z2*r2 + z4*R[3]; - r *= x; + r *= x; s1 = one+z*S[1]; s2 = S[2]+z*S[3]; s3 = S[4]+z*S[5]; @@ -152,23 +132,16 @@ static double zero = 0.0; #endif return(x*0.5+r/s); } +strong_alias (__ieee754_j1, __j1_finite) -#ifdef __STDC__ static const double U0[5] = { -#else -static double U0[5] = { -#endif -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ }; -#ifdef __STDC__ static const double V0[5] = { -#else -static double V0[5] = { -#endif 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ @@ -176,56 +149,53 @@ static double V0[5] = { 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ }; -#ifdef __STDC__ - double __ieee754_y1(double x) -#else - double __ieee754_y1(x) - double x; -#endif +double +__ieee754_y1(double x) { double z, s,c,ss,cc,u,v,u1,u2,v1,v2,v3,z2,z4; int32_t hx,ix,lx; EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; + ix = 0x7fffffff&hx; /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ - if(ix>=0x7ff00000) return one/(x+x*x); - if((ix|lx)==0) return -HUGE_VAL+x; /* -inf and overflow exception. */; - if(hx<0) return zero/(zero*x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ + if(__builtin_expect(ix>=0x7ff00000, 0)) return one/(x+x*x); + if(__builtin_expect((ix|lx)==0, 0)) + return -HUGE_VAL+x; /* -inf and overflow exception. */; + if(__builtin_expect(hx<0, 0)) return zero/(zero*x); + if(ix >= 0x40000000) { /* |x| >= 2.0 */ __sincos (x, &s, &c); - ss = -s-c; - cc = s-c; - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = __cos(x+x); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - * where x0 = x-3pi/4 - * Better formula: - * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (cos(x) + sin(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); - else { - u = pone(x); v = qone(x); - z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); - } - return z; - } - if(ix<=0x3c900000) { /* x < 2**-54 */ - return(-tpi/x); - } - z = x*x; + ss = -s-c; + cc = s-c; + if(ix<0x7fe00000) { /* make sure x+x not overflow */ + z = __cos(x+x); + if ((s*c)>zero) cc = z/ss; + else ss = z/cc; + } + /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) + * where x0 = x-3pi/4 + * Better formula: + * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) + * = -1/sqrt(2) * (cos(x) + sin(x)) + * To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one. + */ + if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); + else { + u = pone(x); v = qone(x); + z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); + } + return z; + } + if(__builtin_expect(ix<=0x3c900000, 0)) { /* x < 2**-54 */ + return(-tpi/x); + } + z = x*x; #ifdef DO_NOT_USE_THIS - u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); - v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); + u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); + v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); #else u1 = U0[0]+z*U0[1];z2=z*z; u2 = U0[2]+z*U0[3];z4=z2*z2; @@ -235,24 +205,21 @@ static double V0[5] = { v3 = V0[3]+z*V0[4]; v = v1 + z2*v2 + z4*v3; #endif - return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); + return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); } +strong_alias (__ieee754_y1, __y1_finite) /* For x >= 8, the asymptotic expansions of pone is * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. * We approximate pone by - * pone(x) = 1 + (R/S) + * pone(x) = 1 + (R/S) * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 - * S = 1 + ps0*s^2 + ... + ps4*s^10 + * S = 1 + ps0*s^2 + ... + ps4*s^10 * and * | pone(x)-1-R/S | <= 2 ** ( -60.06) */ -#ifdef __STDC__ static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ @@ -260,11 +227,7 @@ static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ }; -#ifdef __STDC__ static const double ps8[5] = { -#else -static double ps8[5] = { -#endif 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ @@ -272,11 +235,7 @@ static double ps8[5] = { 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ }; -#ifdef __STDC__ static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ @@ -284,11 +243,7 @@ static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ }; -#ifdef __STDC__ static const double ps5[5] = { -#else -static double ps5[5] = { -#endif 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ @@ -296,11 +251,7 @@ static double ps5[5] = { 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ }; -#ifdef __STDC__ static const double pr3[6] = { -#else -static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ @@ -308,11 +259,7 @@ static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ }; -#ifdef __STDC__ static const double ps3[5] = { -#else -static double ps3[5] = { -#endif 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ @@ -320,11 +267,7 @@ static double ps3[5] = { 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ }; -#ifdef __STDC__ static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ @@ -332,11 +275,7 @@ static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ }; -#ifdef __STDC__ static const double ps2[5] = { -#else -static double ps2[5] = { -#endif 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ @@ -344,30 +283,22 @@ static double ps2[5] = { 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ }; -#ifdef __STDC__ - static double pone(double x) -#else - static double pone(x) - double x; -#endif +static double +pone(double x) { -#ifdef __STDC__ const double *p,*q; -#else - double *p,*q; -#endif double z,r,s,r1,r2,r3,s1,s2,s3,z2,z4; - int32_t ix; + int32_t ix; GET_HIGH_WORD(ix,x); ix &= 0x7fffffff; - if(ix>=0x40200000) {p = pr8; q= ps8;} - else if(ix>=0x40122E8B){p = pr5; q= ps5;} - else if(ix>=0x4006DB6D){p = pr3; q= ps3;} - else if(ix>=0x40000000){p = pr2; q= ps2;} - z = one/(x*x); + if(ix>=0x40200000) {p = pr8; q= ps8;} + else if(ix>=0x40122E8B){p = pr5; q= ps5;} + else if(ix>=0x4006DB6D){p = pr3; q= ps3;} + else if(ix>=0x40000000){p = pr2; q= ps2;} + z = one/(x*x); #ifdef DO_NOT_USE_THIS - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); #else r1 = p[0]+z*p[1]; z2=z*z; r2 = p[2]+z*p[3]; z4=z2*z2; @@ -378,25 +309,21 @@ static double ps2[5] = { s3 = q[3]+z*q[4]; s = s1 + z2*s2 + z4*s3; #endif - return one+ r/s; + return one+ r/s; } /* For x >= 8, the asymptotic expansions of qone is * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. * We approximate pone by - * qone(x) = s*(0.375 + (R/S)) + * qone(x) = s*(0.375 + (R/S)) * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 - * S = 1 + qs1*s^2 + ... + qs6*s^12 + * S = 1 + qs1*s^2 + ... + qs6*s^12 * and * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) */ -#ifdef __STDC__ static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ @@ -404,11 +331,7 @@ static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ }; -#ifdef __STDC__ static const double qs8[6] = { -#else -static double qs8[6] = { -#endif 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ @@ -417,11 +340,7 @@ static double qs8[6] = { -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ }; -#ifdef __STDC__ static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ @@ -429,11 +348,7 @@ static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ }; -#ifdef __STDC__ static const double qs5[6] = { -#else -static double qs5[6] = { -#endif 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ @@ -442,11 +357,7 @@ static double qs5[6] = { -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ }; -#ifdef __STDC__ static const double qr3[6] = { -#else -static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ @@ -454,11 +365,7 @@ static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ }; -#ifdef __STDC__ static const double qs3[6] = { -#else -static double qs3[6] = { -#endif 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ @@ -467,11 +374,7 @@ static double qs3[6] = { -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ }; -#ifdef __STDC__ static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ @@ -479,11 +382,7 @@ static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ }; -#ifdef __STDC__ static const double qs2[6] = { -#else -static double qs2[6] = { -#endif 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ @@ -492,18 +391,10 @@ static double qs2[6] = { -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ }; -#ifdef __STDC__ - static double qone(double x) -#else - static double qone(x) - double x; -#endif +static double +qone(double x) { -#ifdef __STDC__ const double *p,*q; -#else - double *p,*q; -#endif double s,r,z,r1,r2,r3,s1,s2,s3,z2,z4,z6; int32_t ix; GET_HIGH_WORD(ix,x); |