about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_j1.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_j1.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_j1.c255
1 files changed, 73 insertions, 182 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_j1.c b/sysdeps/ieee754/dbl-64/e_j1.c
index 8a3b2ffd19..fdc6b5b896 100644
--- a/sysdeps/ieee754/dbl-64/e_j1.c
+++ b/sysdeps/ieee754/dbl-64/e_j1.c
@@ -13,10 +13,6 @@
    for performance improvement on pipelined processors.
 */
 
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
-#endif
-
 /* __ieee754_j1(x), __ieee754_y1(x)
  * Bessel function of the first and second kinds of order zero.
  * Method -- j1(x):
@@ -26,17 +22,17 @@ static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
  *	   for x in (2,inf)
- * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
- * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ *		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ *	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
  *	   as follow:
  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
  *			=  1/sqrt(2) * (sin(x) - cos(x))
  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  *			= -1/sqrt(2) * (sin(x) + cos(x))
- * 	   (To avoid cancellation, use
+ *	   (To avoid cancellation, use
  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * 	    to compute the worse one.)
+ *	    to compute the worse one.)
  *
  *	3 Special cases
  *		j1(nan)= nan
@@ -57,25 +53,17 @@ static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
  *	   Note: For tiny x, 1/x dominate y1 and hence
  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
  *	3. For x>=2.
- * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ *	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
  *	   by method mentioned above.
  */
 
 #include "math.h"
 #include "math_private.h"
 
-#ifdef __STDC__
 static double pone(double), qone(double);
-#else
-static double pone(), qone();
-#endif
 
-#ifdef __STDC__
 static const double
-#else
-static double
-#endif
 huge    = 1e300,
 one	= 1.0,
 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
@@ -91,25 +79,17 @@ S[]  =  {0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
   5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
   1.23542274426137913908e-11}; /* 0x3DAB2ACF, 0xCFB97ED8 */
 
-#ifdef __STDC__
 static const double zero    = 0.0;
-#else
-static double zero    = 0.0;
-#endif
 
-#ifdef __STDC__
-	double __ieee754_j1(double x)
-#else
-	double __ieee754_j1(x)
-	double x;
-#endif
+double
+__ieee754_j1(double x)
 {
 	double z, s,c,ss,cc,r,u,v,y,r1,r2,s1,s2,s3,z2,z4;
 	int32_t hx,ix;
 
 	GET_HIGH_WORD(hx,x);
 	ix = hx&0x7fffffff;
-	if(ix>=0x7ff00000) return one/x;
+	if(__builtin_expect(ix>=0x7ff00000, 0)) return one/x;
 	y = fabs(x);
 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
 		__sincos (y, &s, &c);
@@ -118,7 +98,7 @@ static double zero    = 0.0;
 		if(ix<0x7fe00000) {  /* make sure y+y not overflow */
 		    z = __cos(y+y);
 		    if ((s*c)>zero) cc = z/ss;
-		    else 	    ss = z/cc;
+		    else	    ss = z/cc;
 		}
 	/*
 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
@@ -130,9 +110,9 @@ static double zero    = 0.0;
 		    z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
 		}
 		if(hx<0) return -z;
-		else  	 return  z;
+		else	 return  z;
 	}
-	if(ix<0x3e400000) {	/* |x|<2**-27 */
+	if(__builtin_expect(ix<0x3e400000, 0)) {	/* |x|<2**-27 */
 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
 	}
 	z = x*x;
@@ -144,7 +124,7 @@ static double zero    = 0.0;
 	r1 = z*R[0]; z2=z*z;
 	r2 = R[1]+z*R[2]; z4=z2*z2;
 	r = r1 + z2*r2 + z4*R[3];
-  	r *= x;
+	r *= x;
 	s1 = one+z*S[1];
 	s2 = S[2]+z*S[3];
 	s3 = S[4]+z*S[5];
@@ -152,23 +132,16 @@ static double zero    = 0.0;
 #endif
 	return(x*0.5+r/s);
 }
+strong_alias (__ieee754_j1, __j1_finite)
 
-#ifdef __STDC__
 static const double U0[5] = {
-#else
-static double U0[5] = {
-#endif
  -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
   5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
  -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
   2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
  -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
 };
-#ifdef __STDC__
 static const double V0[5] = {
-#else
-static double V0[5] = {
-#endif
   1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
   2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
   1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
@@ -176,56 +149,53 @@ static double V0[5] = {
   1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
 };
 
-#ifdef __STDC__
-	double __ieee754_y1(double x)
-#else
-	double __ieee754_y1(x)
-	double x;
-#endif
+double
+__ieee754_y1(double x)
 {
 	double z, s,c,ss,cc,u,v,u1,u2,v1,v2,v3,z2,z4;
 	int32_t hx,ix,lx;
 
 	EXTRACT_WORDS(hx,lx,x);
-        ix = 0x7fffffff&hx;
+	ix = 0x7fffffff&hx;
     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
-	if(ix>=0x7ff00000) return  one/(x+x*x);
-        if((ix|lx)==0) return -HUGE_VAL+x; /* -inf and overflow exception.  */;
-        if(hx<0) return zero/(zero*x);
-        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+	if(__builtin_expect(ix>=0x7ff00000, 0)) return  one/(x+x*x);
+	if(__builtin_expect((ix|lx)==0, 0))
+		return -HUGE_VAL+x; /* -inf and overflow exception.  */;
+	if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
+	if(ix >= 0x40000000) {  /* |x| >= 2.0 */
 		__sincos (x, &s, &c);
-                ss = -s-c;
-                cc = s-c;
-                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
-                    z = __cos(x+x);
-                    if ((s*c)>zero) cc = z/ss;
-                    else            ss = z/cc;
-                }
-        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
-         * where x0 = x-3pi/4
-         *      Better formula:
-         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
-         *                      =  1/sqrt(2) * (sin(x) - cos(x))
-         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
-         *                      = -1/sqrt(2) * (cos(x) + sin(x))
-         * To avoid cancellation, use
-         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
-         * to compute the worse one.
-         */
-                if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
-                else {
-                    u = pone(x); v = qone(x);
-                    z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
-                }
-                return z;
-        }
-        if(ix<=0x3c900000) {    /* x < 2**-54 */
-            return(-tpi/x);
-        }
-        z = x*x;
+		ss = -s-c;
+		cc = s-c;
+		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+		    z = __cos(x+x);
+		    if ((s*c)>zero) cc = z/ss;
+		    else            ss = z/cc;
+		}
+	/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+	 * where x0 = x-3pi/4
+	 *      Better formula:
+	 *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+	 *                      =  1/sqrt(2) * (sin(x) - cos(x))
+	 *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+	 *                      = -1/sqrt(2) * (cos(x) + sin(x))
+	 * To avoid cancellation, use
+	 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+	 * to compute the worse one.
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
+		else {
+		    u = pone(x); v = qone(x);
+		    z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
+		}
+		return z;
+	}
+	if(__builtin_expect(ix<=0x3c900000, 0)) {    /* x < 2**-54 */
+	    return(-tpi/x);
+	}
+	z = x*x;
 #ifdef DO_NOT_USE_THIS
-        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
-        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+	u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+	v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
 #else
 	u1 = U0[0]+z*U0[1];z2=z*z;
 	u2 = U0[2]+z*U0[3];z4=z2*z2;
@@ -235,24 +205,21 @@ static double V0[5] = {
 	v3 = V0[3]+z*V0[4];
 	v = v1 + z2*v2 + z4*v3;
 #endif
-        return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
+	return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
 }
+strong_alias (__ieee754_y1, __y1_finite)
 
 /* For x >= 8, the asymptotic expansions of pone is
  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
  * We approximate pone by
- * 	pone(x) = 1 + (R/S)
+ *	pone(x) = 1 + (R/S)
  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
- * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
+ *	  S = 1 + ps0*s^2 + ... + ps4*s^10
  * and
  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
  */
 
-#ifdef __STDC__
 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
   1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
   1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
@@ -260,11 +227,7 @@ static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
   3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
   7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
 };
-#ifdef __STDC__
 static const double ps8[5] = {
-#else
-static double ps8[5] = {
-#endif
   1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
   3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
   3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
@@ -272,11 +235,7 @@ static double ps8[5] = {
   3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
 };
 
-#ifdef __STDC__
 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
   1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
   1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
   6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
@@ -284,11 +243,7 @@ static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
   5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
   5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
 };
-#ifdef __STDC__
 static const double ps5[5] = {
-#else
-static double ps5[5] = {
-#endif
   5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
   9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
   5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
@@ -296,11 +251,7 @@ static double ps5[5] = {
   1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
 };
 
-#ifdef __STDC__
 static const double pr3[6] = {
-#else
-static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
   3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
   1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
   3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
@@ -308,11 +259,7 @@ static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
   9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
   4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
 };
-#ifdef __STDC__
 static const double ps3[5] = {
-#else
-static double ps3[5] = {
-#endif
   3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
   3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
   1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
@@ -320,11 +267,7 @@ static double ps3[5] = {
   1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
 };
 
-#ifdef __STDC__
 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
   1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
   1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
   2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
@@ -332,11 +275,7 @@ static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
   1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
   5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
 };
-#ifdef __STDC__
 static const double ps2[5] = {
-#else
-static double ps2[5] = {
-#endif
   2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
   1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
   2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
@@ -344,30 +283,22 @@ static double ps2[5] = {
   8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
 };
 
-#ifdef __STDC__
-	static double pone(double x)
-#else
-	static double pone(x)
-	double x;
-#endif
+static double
+pone(double x)
 {
-#ifdef __STDC__
 	const double *p,*q;
-#else
-	double *p,*q;
-#endif
 	double z,r,s,r1,r2,r3,s1,s2,s3,z2,z4;
-        int32_t ix;
+	int32_t ix;
 	GET_HIGH_WORD(ix,x);
 	ix &= 0x7fffffff;
-        if(ix>=0x40200000)     {p = pr8; q= ps8;}
-        else if(ix>=0x40122E8B){p = pr5; q= ps5;}
-        else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
-        else if(ix>=0x40000000){p = pr2; q= ps2;}
-        z = one/(x*x);
+	if(ix>=0x40200000)     {p = pr8; q= ps8;}
+	else if(ix>=0x40122E8B){p = pr5; q= ps5;}
+	else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
+	else if(ix>=0x40000000){p = pr2; q= ps2;}
+	z = one/(x*x);
 #ifdef DO_NOT_USE_THIS
-        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
 #else
 	r1 = p[0]+z*p[1]; z2=z*z;
 	r2 = p[2]+z*p[3]; z4=z2*z2;
@@ -378,25 +309,21 @@ static double ps2[5] = {
 	s3 = q[3]+z*q[4];
 	s = s1 + z2*s2 + z4*s3;
 #endif
-        return one+ r/s;
+	return one+ r/s;
 }
 
 
 /* For x >= 8, the asymptotic expansions of qone is
  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
  * We approximate pone by
- * 	qone(x) = s*(0.375 + (R/S))
+ *	qone(x) = s*(0.375 + (R/S))
  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
- * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
+ *	  S = 1 + qs1*s^2 + ... + qs6*s^12
  * and
  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
  */
 
-#ifdef __STDC__
 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
  -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
  -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
@@ -404,11 +331,7 @@ static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
  -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
 };
-#ifdef __STDC__
 static const double qs8[6] = {
-#else
-static double qs8[6] = {
-#endif
   1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
   7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
   1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
@@ -417,11 +340,7 @@ static double qs8[6] = {
  -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
 };
 
-#ifdef __STDC__
 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
  -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
  -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
  -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
@@ -429,11 +348,7 @@ static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
  -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
 };
-#ifdef __STDC__
 static const double qs5[6] = {
-#else
-static double qs5[6] = {
-#endif
   8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
   1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
   1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
@@ -442,11 +357,7 @@ static double qs5[6] = {
  -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
 };
 
-#ifdef __STDC__
 static const double qr3[6] = {
-#else
-static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
  -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
  -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
  -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
@@ -454,11 +365,7 @@ static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
  -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
 };
-#ifdef __STDC__
 static const double qs3[6] = {
-#else
-static double qs3[6] = {
-#endif
   4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
   6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
   3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
@@ -467,11 +374,7 @@ static double qs3[6] = {
  -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
 };
 
-#ifdef __STDC__
 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
  -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
  -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
  -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
@@ -479,11 +382,7 @@ static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
  -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
 };
-#ifdef __STDC__
 static const double qs2[6] = {
-#else
-static double qs2[6] = {
-#endif
   2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
   2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
   7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
@@ -492,18 +391,10 @@ static double qs2[6] = {
  -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
 };
 
-#ifdef __STDC__
-	static double qone(double x)
-#else
-	static double qone(x)
-	double x;
-#endif
+static double
+qone(double x)
 {
-#ifdef __STDC__
 	const double *p,*q;
-#else
-	double *p,*q;
-#endif
 	double  s,r,z,r1,r2,r3,s1,s2,s3,z2,z4,z6;
 	int32_t ix;
 	GET_HIGH_WORD(ix,x);