diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_exp.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_exp.c | 485 |
1 files changed, 154 insertions, 331 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c index 7d8b414034..209f20b972 100644 --- a/sysdeps/ieee754/dbl-64/e_exp.c +++ b/sysdeps/ieee754/dbl-64/e_exp.c @@ -1,48 +1,158 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2018 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/***************************************************************************/ -/* MODULE_NAME:uexp.c */ -/* */ -/* FUNCTION:uexp */ -/* exp1 */ -/* */ -/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */ -/* */ -/* An ultimate exp routine. Given an IEEE double machine number x */ -/* it computes an almost correctly rounded (to nearest) value of e^x */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/***************************************************************************/ +/* Double-precision e^x function. + Copyright (C) 2018 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ #include <math.h> -#include "endian.h" -#include "uexp.h" -#include "mydefs.h" -#include "MathLib.h" -#include "uexp.tbl" +#include <stdint.h> #include <math-barriers.h> -#include <math_private.h> -#include <fenv_private.h> -#include <fenv.h> -#include <float.h> -#include "eexp.tbl" +#include <math-narrow-eval.h> +#include "math_config.h" + +#define N (1 << EXP_TABLE_BITS) +#define InvLn2N __exp_data.invln2N +#define NegLn2hiN __exp_data.negln2hiN +#define NegLn2loN __exp_data.negln2loN +#define Shift __exp_data.shift +#define T __exp_data.tab +#define C2 __exp_data.poly[5 - EXP_POLY_ORDER] +#define C3 __exp_data.poly[6 - EXP_POLY_ORDER] +#define C4 __exp_data.poly[7 - EXP_POLY_ORDER] +#define C5 __exp_data.poly[8 - EXP_POLY_ORDER] + +/* Handle cases that may overflow or underflow when computing the result that + is scale*(1+TMP) without intermediate rounding. The bit representation of + scale is in SBITS, however it has a computed exponent that may have + overflown into the sign bit so that needs to be adjusted before using it as + a double. (int32_t)KI is the k used in the argument reduction and exponent + adjustment of scale, positive k here means the result may overflow and + negative k means the result may underflow. */ +static inline double +specialcase (double_t tmp, uint64_t sbits, uint64_t ki) +{ + double_t scale, y; + + if ((ki & 0x80000000) == 0) + { + /* k > 0, the exponent of scale might have overflowed by <= 460. */ + sbits -= 1009ull << 52; + scale = asdouble (sbits); + y = 0x1p1009 * (scale + scale * tmp); + return check_oflow (y); + } + /* k < 0, need special care in the subnormal range. */ + sbits += 1022ull << 52; + scale = asdouble (sbits); + y = scale + scale * tmp; + if (y < 1.0) + { + /* Round y to the right precision before scaling it into the subnormal + range to avoid double rounding that can cause 0.5+E/2 ulp error where + E is the worst-case ulp error outside the subnormal range. So this + is only useful if the goal is better than 1 ulp worst-case error. */ + double_t hi, lo; + lo = scale - y + scale * tmp; + hi = 1.0 + y; + lo = 1.0 - hi + y + lo; + y = math_narrow_eval (hi + lo) - 1.0; + /* Avoid -0.0 with downward rounding. */ + if (WANT_ROUNDING && y == 0.0) + y = 0.0; + /* The underflow exception needs to be signaled explicitly. */ + math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022); + } + y = 0x1p-1022 * y; + return check_uflow (y); +} + +/* Top 12 bits of a double (sign and exponent bits). */ +static inline uint32_t +top12 (double x) +{ + return asuint64 (x) >> 52; +} + +/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. + If hastail is 0 then xtail is assumed to be 0 too. */ +static inline double +exp_inline (double x, double xtail, int hastail) +{ + uint32_t abstop; + uint64_t ki, idx, top, sbits; + /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ + double_t kd, z, r, r2, scale, tail, tmp; + + abstop = top12 (x) & 0x7ff; + if (__glibc_unlikely (abstop - top12 (0x1p-54) + >= top12 (512.0) - top12 (0x1p-54))) + { + if (abstop - top12 (0x1p-54) >= 0x80000000) + /* Avoid spurious underflow for tiny x. */ + /* Note: 0 is common input. */ + return WANT_ROUNDING ? 1.0 + x : 1.0; + if (abstop >= top12 (1024.0)) + { + if (asuint64 (x) == asuint64 (-INFINITY)) + return 0.0; + if (abstop >= top12 (INFINITY)) + return 1.0 + x; + if (asuint64 (x) >> 63) + return __math_uflow (0); + else + return __math_oflow (0); + } + /* Large x is special cased below. */ + abstop = 0; + } + + /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ + /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ + z = InvLn2N * x; +#if TOINT_INTRINSICS + kd = roundtoint (z); + ki = converttoint (z); +#else + /* z - kd is in [-1, 1] in non-nearest rounding modes. */ + kd = math_narrow_eval (z + Shift); + ki = asuint64 (kd); + kd -= Shift; +#endif + r = x + kd * NegLn2hiN + kd * NegLn2loN; + /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ + if (hastail) + r += xtail; + /* 2^(k/N) ~= scale * (1 + tail). */ + idx = 2 * (ki % N); + top = ki << (52 - EXP_TABLE_BITS); + tail = asdouble (T[idx]); + /* This is only a valid scale when -1023*N < k < 1024*N. */ + sbits = T[idx + 1] + top; + /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ + /* Evaluation is optimized assuming superscalar pipelined execution. */ + r2 = r * r; + /* Without fma the worst case error is 0.25/N ulp larger. */ + /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ + tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); + if (__glibc_unlikely (abstop == 0)) + return specialcase (tmp, sbits, ki); + scale = asdouble (sbits); + /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there + is no spurious underflow here even without fma. */ + return scale + scale * tmp; +} #ifndef SECTION # define SECTION @@ -52,187 +162,7 @@ double SECTION __ieee754_exp (double x) { - double bexp, t, eps, del, base, y, al, bet, res, rem, cor; - double z; - mynumber junk1, junk2, binexp = {{0, 0}}; - int4 i, j, m, n, ex; - int4 k; - double retval; - - { - SET_RESTORE_ROUND (FE_TONEAREST); - - junk1.x = x; - m = junk1.i[HIGH_HALF]; - n = m & hugeint; - - if (n < 0x3ff0a2b2) /* |x| < 1.03972053527832 */ - { - if (n < 0x3f862e42) /* |x| < 3/2 ln 2 */ - { - if (n < 0x3ed00000) /* |x| < 1/64 ln 2 */ - { - if (n < 0x3e300000) /* |x| < 2^18 */ - { - retval = one + junk1.x; - goto ret; - } - retval = one + junk1.x * (one + half * junk1.x); - goto ret; - } - t = junk1.x * junk1.x; - retval = junk1.x + (t * (half + junk1.x * t2) + - (t * t) * (t3 + junk1.x * t4 + t * t5)); - retval = one + retval; - goto ret; - } - - /* Find the multiple of 2^-6 nearest x. */ - k = n >> 20; - j = (0x00100000 | (n & 0x000fffff)) >> (0x40c - k); - j = (j - 1) & ~1; - if (m < 0) - j += 134; - z = junk1.x - TBL2[j]; - t = z * z; - retval = z + (t * (half + (z * t2)) - + (t * t) * (t3 + z * t4 + t * t5)); - retval = TBL2[j + 1] + TBL2[j + 1] * retval; - goto ret; - } - - if (n < bigint) /* && |x| >= 1.03972053527832 */ - { - y = x * log2e.x + three51.x; - bexp = y - three51.x; /* multiply the result by 2**bexp */ - - junk1.x = y; - - eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ - t = x - bexp * ln_two1.x; - - y = t + three33.x; - base = y - three33.x; /* t rounded to a multiple of 2**-18 */ - junk2.x = y; - del = (t - base) - eps; /* x = bexp*ln(2) + base + del */ - eps = del + del * del * (p3.x * del + p2.x); - - binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; - - i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; - j = (junk2.i[LOW_HALF] & 511) << 1; - - al = coar.x[i] * fine.x[j]; - bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) - + coar.x[i + 1] * fine.x[j + 1]); - - rem = (bet + bet * eps) + al * eps; - res = al + rem; - /* Maximum relative error is 7.8e-22 (70.1 bits). - Maximum ULP error is 0.500007. */ - retval = res * binexp.x; - goto ret; - } - - if (n >= badint) - { - if (n > infint) - { - retval = x + x; - goto ret; - } /* x is NaN */ - if (n < infint) - { - if (x > 0) - goto ret_huge; - else - goto ret_tiny; - } - /* x is finite, cause either overflow or underflow */ - if (junk1.i[LOW_HALF] != 0) - { - retval = x + x; - goto ret; - } /* x is NaN */ - retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */ - goto ret; - } - - y = x * log2e.x + three51.x; - bexp = y - three51.x; - junk1.x = y; - eps = bexp * ln_two2.x; - t = x - bexp * ln_two1.x; - y = t + three33.x; - base = y - three33.x; - junk2.x = y; - del = (t - base) - eps; - eps = del + del * del * (p3.x * del + p2.x); - i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; - j = (junk2.i[LOW_HALF] & 511) << 1; - al = coar.x[i] * fine.x[j]; - bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) - + coar.x[i + 1] * fine.x[j + 1]); - rem = (bet + bet * eps) + al * eps; - res = al + rem; - cor = (al - res) + rem; - if (m >> 31) - { - ex = junk1.i[LOW_HALF]; - if (res < 1.0) - { - res += res; - cor += cor; - ex -= 1; - } - if (ex >= -1022) - { - binexp.i[HIGH_HALF] = (1023 + ex) << 20; - /* Does not underflow: res >= 1.0, binexp >= 0x1p-1022 - Maximum relative error is 7.8e-22 (70.1 bits). - Maximum ULP error is 0.500007. */ - retval = res * binexp.x; - goto ret; - } - ex = -(1022 + ex); - binexp.i[HIGH_HALF] = (1023 - ex) << 20; - res *= binexp.x; - cor *= binexp.x; - t = 1.0 + res; - y = ((1.0 - t) + res) + cor; - res = t + y; - /* Maximum ULP error is 0.5000035. */ - binexp.i[HIGH_HALF] = 0x00100000; - retval = (res - 1.0) * binexp.x; - if (retval < DBL_MIN) - { - double force_underflow = tiny * tiny; - math_force_eval (force_underflow); - } - if (retval == 0) - goto ret_tiny; - goto ret; - } - else - { - binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; - /* Maximum relative error is 7.8e-22 (70.1 bits). - Maximum ULP error is 0.500007. */ - retval = res * binexp.x * t256.x; - if (isinf (retval)) - goto ret_huge; - else - goto ret; - } - } -ret: - return retval; - - ret_huge: - return hhuge * hhuge; - - ret_tiny: - return tiny * tiny; + return exp_inline (x, 0, 0); } #ifndef __ieee754_exp strong_alias (__ieee754_exp, __exp_finite) @@ -243,112 +173,5 @@ double SECTION __exp1 (double x, double xx) { - double bexp, t, eps, del, base, y, al, bet, res, rem, cor; - mynumber junk1, junk2, binexp = {{0, 0}}; - int4 i, j, m, n, ex; - - junk1.x = x; - m = junk1.i[HIGH_HALF]; - n = m & hugeint; /* no sign */ - - /* fabs (x) > 5.551112e-17 and fabs (x) < 7.080010e+02. */ - if (n > smallint && n < bigint) - { - y = x * log2e.x + three51.x; - bexp = y - three51.x; /* multiply the result by 2**bexp */ - - junk1.x = y; - - eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ - t = x - bexp * ln_two1.x; - - y = t + three33.x; - base = y - three33.x; /* t rounded to a multiple of 2**-18 */ - junk2.x = y; - del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */ - eps = del + del * del * (p3.x * del + p2.x); - - binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; - - i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; - j = (junk2.i[LOW_HALF] & 511) << 1; - - al = coar.x[i] * fine.x[j]; - bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) - + coar.x[i + 1] * fine.x[j + 1]); - - rem = (bet + bet * eps) + al * eps; - res = al + rem; - /* Maximum relative error before rounding is 8.8e-22 (69.9 bits). - Maximum ULP error is 0.500008. */ - return res * binexp.x; - } - - if (n <= smallint) - return 1.0; /* if x->0 e^x=1 */ - - if (n >= badint) - { - if (n > infint) - return (zero / zero); /* x is NaN, return invalid */ - if (n < infint) - return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny)); - /* x is finite, cause either overflow or underflow */ - if (junk1.i[LOW_HALF] != 0) - return (zero / zero); /* x is NaN */ - return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */ - } - - y = x * log2e.x + three51.x; - bexp = y - three51.x; - junk1.x = y; - eps = bexp * ln_two2.x; - t = x - bexp * ln_two1.x; - y = t + three33.x; - base = y - three33.x; - junk2.x = y; - del = (t - base) + (xx - eps); - eps = del + del * del * (p3.x * del + p2.x); - i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; - j = (junk2.i[LOW_HALF] & 511) << 1; - al = coar.x[i] * fine.x[j]; - bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) - + coar.x[i + 1] * fine.x[j + 1]); - rem = (bet + bet * eps) + al * eps; - res = al + rem; - cor = (al - res) + rem; - if (m >> 31) - { - /* x < 0. */ - ex = junk1.i[LOW_HALF]; - if (res < 1.0) - { - res += res; - cor += cor; - ex -= 1; - } - if (ex >= -1022) - { - binexp.i[HIGH_HALF] = (1023 + ex) << 20; - /* Maximum ULP error is 0.500008. */ - return res * binexp.x; - } - /* Denormal case - ex < -1022. */ - ex = -(1022 + ex); - binexp.i[HIGH_HALF] = (1023 - ex) << 20; - res *= binexp.x; - cor *= binexp.x; - t = 1.0 + res; - y = ((1.0 - t) + res) + cor; - res = t + y; - binexp.i[HIGH_HALF] = 0x00100000; - /* Maximum ULP error is 0.500004. */ - return (res - 1.0) * binexp.x; - } - else - { - binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; - /* Maximum ULP error is 0.500008. */ - return res * binexp.x * t256.x; - } + return exp_inline (x, xx, 1); } |