about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_exp.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_exp.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c398
1 files changed, 215 insertions, 183 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
index 6757a14ce1..6a7122f585 100644
--- a/sysdeps/ieee754/dbl-64/e_exp.c
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -1,3 +1,4 @@
+/* EXP function - Compute double precision exponential */
 /*
  * IBM Accurate Mathematical Library
  * written by International Business Machines Corp.
@@ -23,7 +24,7 @@
 /*           exp1                                                          */
 /*                                                                         */
 /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h                       */
-/*              mpa.c mpexp.x slowexp.c                                    */
+/*              mpa.c mpexp.x                                              */
 /*                                                                         */
 /* An ultimate exp routine. Given an IEEE double machine number x          */
 /* it computes the correctly rounded (to nearest) value of e^x             */
@@ -32,207 +33,238 @@
 /*                                                                         */
 /***************************************************************************/
 
+/*  IBM exp(x) replaced by following exp(x) in 2017. IBM exp1(x,xx) remains.  */
+/* exp(x)
+   Hybrid algorithm of Peter Tang's Table driven method (for large
+   arguments) and an accurate table (for small arguments).
+   Written by K.C. Ng, November 1988.
+   Revised by Patrick McGehearty, Nov 2017 to use j/64 instead of j/32
+   Method (large arguments):
+	1. Argument Reduction: given the input x, find r and integer k
+	   and j such that
+	             x = (k+j/64)*(ln2) + r,  |r| <= (1/128)*ln2
+
+	2. exp(x) = 2^k * (2^(j/64) + 2^(j/64)*expm1(r))
+	   a. expm1(r) is approximated by a polynomial:
+	      expm1(r) ~ r + t1*r^2 + t2*r^3 + ... + t5*r^6
+	      Here t1 = 1/2 exactly.
+	   b. 2^(j/64) is represented to twice double precision
+	      as TBL[2j]+TBL[2j+1].
+
+   Note: If divide were fast enough, we could use another approximation
+	 in 2.a:
+	      expm1(r) ~ (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
+	      (for the same t1 and t2 as above)
+
+   Special cases:
+	exp(INF) is INF, exp(NaN) is NaN;
+	exp(-INF)=  0;
+	for finite argument, only exp(0)=1 is exact.
+
+   Accuracy:
+	According to an error analysis, the error is always less than
+	an ulp (unit in the last place).  The largest errors observed
+	are less than 0.55 ulp for normal results and less than 0.75 ulp
+	for subnormal results.
+
+   Misc. info.
+	For IEEE double
+		if x >  7.09782712893383973096e+02 then exp(x) overflow
+		if x < -7.45133219101941108420e+02 then exp(x) underflow.  */
+
 #include <math.h>
+#include <math-svid-compat.h>
+#include <math_private.h>
+#include <errno.h>
 #include "endian.h"
 #include "uexp.h"
+#include "uexp.tbl"
 #include "mydefs.h"
 #include "MathLib.h"
-#include "uexp.tbl"
-#include <math_private.h>
 #include <fenv.h>
 #include <float.h>
 
-#ifndef SECTION
-# define SECTION
-#endif
+extern double __ieee754_exp (double);
+
+#include "eexp.tbl"
+
+static const double
+  half = 0.5,
+  one = 1.0;
 
-double __slowexp (double);
 
-/* An ultimate exp routine. Given an IEEE double machine number x it computes
-   the correctly rounded (to nearest) value of e^x.  */
 double
-SECTION
-__ieee754_exp (double x)
+__ieee754_exp (double x_arg)
 {
-  double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
-  mynumber junk1, junk2, binexp = {{0, 0}};
-  int4 i, j, m, n, ex;
+  double z, t;
   double retval;
-
+  int hx, ix, k, j, m;
+  int fe_val;
+  union
   {
-    SET_RESTORE_ROUND (FE_TONEAREST);
-
-    junk1.x = x;
-    m = junk1.i[HIGH_HALF];
-    n = m & hugeint;
-
-    if (n > smallint && n < bigint)
-      {
-	y = x * log2e.x + three51.x;
-	bexp = y - three51.x;	/*  multiply the result by 2**bexp        */
-
-	junk1.x = y;
-
-	eps = bexp * ln_two2.x;	/* x = bexp*ln(2) + t - eps               */
-	t = x - bexp * ln_two1.x;
-
-	y = t + three33.x;
-	base = y - three33.x;	/* t rounded to a multiple of 2**-18      */
-	junk2.x = y;
-	del = (t - base) - eps;	/*  x = bexp*ln(2) + base + del           */
-	eps = del + del * del * (p3.x * del + p2.x);
-
-	binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
-
-	i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
-	j = (junk2.i[LOW_HALF] & 511) << 1;
-
-	al = coar.x[i] * fine.x[j];
-	bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
-	       + coar.x[i + 1] * fine.x[j + 1]);
-
-	rem = (bet + bet * eps) + al * eps;
-	res = al + rem;
-	cor = (al - res) + rem;
-	if (res == (res + cor * err_0))
-	  {
-	    retval = res * binexp.x;
-	    goto ret;
-	  }
-	else
-	  {
-	    retval = __slowexp (x);
-	    goto ret;
-	  }			/*if error is over bound */
-      }
-
-    if (n <= smallint)
-      {
-	retval = 1.0;
-	goto ret;
-      }
-
-    if (n >= badint)
-      {
-	if (n > infint)
-	  {
-	    retval = x + x;
-	    goto ret;
-	  }			/* x is NaN */
-	if (n < infint)
-	  {
-	    if (x > 0)
-	      goto ret_huge;
-	    else
-	      goto ret_tiny;
-	  }
-	/* x is finite,  cause either overflow or underflow  */
-	if (junk1.i[LOW_HALF] != 0)
-	  {
-	    retval = x + x;
-	    goto ret;
-	  }			/*  x is NaN  */
-	retval = (x > 0) ? inf.x : zero;	/* |x| = inf;  return either inf or 0 */
-	goto ret;
-      }
-
-    y = x * log2e.x + three51.x;
-    bexp = y - three51.x;
-    junk1.x = y;
-    eps = bexp * ln_two2.x;
-    t = x - bexp * ln_two1.x;
-    y = t + three33.x;
-    base = y - three33.x;
-    junk2.x = y;
-    del = (t - base) - eps;
-    eps = del + del * del * (p3.x * del + p2.x);
-    i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
-    j = (junk2.i[LOW_HALF] & 511) << 1;
-    al = coar.x[i] * fine.x[j];
-    bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
-	   + coar.x[i + 1] * fine.x[j + 1]);
-    rem = (bet + bet * eps) + al * eps;
-    res = al + rem;
-    cor = (al - res) + rem;
-    if (m >> 31)
-      {
-	ex = junk1.i[LOW_HALF];
-	if (res < 1.0)
-	  {
-	    res += res;
-	    cor += cor;
-	    ex -= 1;
-	  }
-	if (ex >= -1022)
-	  {
-	    binexp.i[HIGH_HALF] = (1023 + ex) << 20;
-	    if (res == (res + cor * err_0))
-	      {
-		retval = res * binexp.x;
-		goto ret;
-	      }
-	    else
-	      {
-		retval = __slowexp (x);
-		goto check_uflow_ret;
-	      }			/*if error is over bound */
-	  }
-	ex = -(1022 + ex);
-	binexp.i[HIGH_HALF] = (1023 - ex) << 20;
-	res *= binexp.x;
-	cor *= binexp.x;
-	eps = 1.0000000001 + err_0 * binexp.x;
-	t = 1.0 + res;
-	y = ((1.0 - t) + res) + cor;
-	res = t + y;
-	cor = (t - res) + y;
-	if (res == (res + eps * cor))
-	  {
-	    binexp.i[HIGH_HALF] = 0x00100000;
-	    retval = (res - 1.0) * binexp.x;
-	    goto check_uflow_ret;
-	  }
-	else
-	  {
-	    retval = __slowexp (x);
-	    goto check_uflow_ret;
-	  }			/*   if error is over bound    */
-      check_uflow_ret:
-	if (retval < DBL_MIN)
-	  {
-	    double force_underflow = tiny * tiny;
-	    math_force_eval (force_underflow);
-	  }
-	if (retval == 0)
-	  goto ret_tiny;
-	goto ret;
-      }
-    else
-      {
-	binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
-	if (res == (res + cor * err_0))
-	  retval = res * binexp.x * t256.x;
-	else
-	  retval = __slowexp (x);
-	if (isinf (retval))
-	  goto ret_huge;
-	else
-	  goto ret;
-      }
-  }
-ret:
-  return retval;
-
- ret_huge:
-  return hhuge * hhuge;
-
- ret_tiny:
-  return tiny * tiny;
+    int i_part[2];
+    double x;
+  } xx;
+  union
+  {
+    int y_part[2];
+    double y;
+  } yy;
+  xx.x = x_arg;
+
+  ix = xx.i_part[HIGH_HALF];
+  hx = ix & ~0x80000000;
+
+  if (hx < 0x3ff0a2b2)
+    {				/* |x| < 3/2 ln 2 */
+      if (hx < 0x3f862e42)
+	{			/* |x| < 1/64 ln 2 */
+	  if (hx < 0x3ed00000)
+	    {			/* |x| < 2^-18 */
+	      if (hx < 0x3e300000)
+		{
+		  retval = one + xx.x;
+		  return retval;
+		}
+	      retval = one + xx.x * (one + half * xx.x);
+	      return retval;
+	    }
+	  /* Use FE_TONEAREST rounding mode for computing yy.y.
+	     Avoid set/reset of rounding mode if in FE_TONEAREST mode.  */
+	  fe_val = get_rounding_mode ();
+	  if (fe_val == FE_TONEAREST)
+	    {
+	      t = xx.x * xx.x;
+	      yy.y = xx.x + (t * (half + xx.x * t2)
+			     + (t * t) * (t3 + xx.x * t4 + t * t5));
+	      retval = one + yy.y;
+	    }
+	  else
+	    {
+	      libc_fesetround (FE_TONEAREST);
+	      t = xx.x * xx.x;
+	      yy.y = xx.x + (t * (half + xx.x * t2)
+			     + (t * t) * (t3 + xx.x * t4 + t * t5));
+	      retval = one + yy.y;
+	      libc_fesetround (fe_val);
+	    }
+	  return retval;
+	}
+
+      /* Find the multiple of 2^-6 nearest x.  */
+      k = hx >> 20;
+      j = (0x00100000 | (hx & 0x000fffff)) >> (0x40c - k);
+      j = (j - 1) & ~1;
+      if (ix < 0)
+	j += 134;
+      /* Use FE_TONEAREST rounding mode for computing yy.y.
+	 Avoid set/reset of rounding mode if in FE_TONEAREST mode.  */
+      fe_val = get_rounding_mode ();
+      if (fe_val == FE_TONEAREST)
+	{
+	  z = xx.x - TBL2[j];
+	  t = z * z;
+	  yy.y = z + (t * (half + (z * t2))
+		      + (t * t) * (t3 + z * t4 + t * t5));
+	  retval = TBL2[j + 1] + TBL2[j + 1] * yy.y;
+	}
+      else
+	{
+	  libc_fesetround (FE_TONEAREST);
+	  z = xx.x - TBL2[j];
+	  t = z * z;
+	  yy.y = z + (t * (half + (z * t2))
+		      + (t * t) * (t3 + z * t4 + t * t5));
+	  retval = TBL2[j + 1] + TBL2[j + 1] * yy.y;
+	  libc_fesetround (fe_val);
+	}
+      return retval;
+    }
+
+  if (hx >= 0x40862e42)
+    {				/* x is large, infinite, or nan.  */
+      if (hx >= 0x7ff00000)
+	{
+	  if (ix == 0xfff00000 && xx.i_part[LOW_HALF] == 0)
+	    return zero;	/* exp(-inf) = 0.  */
+	  return (xx.x * xx.x);	/* exp(nan/inf) is nan or inf.  */
+	}
+      if (xx.x > threshold1)
+	{			/* Set overflow error condition.  */
+	  retval = hhuge * hhuge;
+	  return retval;
+	}
+      if (-xx.x > threshold2)
+	{			/* Set underflow error condition.  */
+	  double force_underflow = tiny * tiny;
+	  math_force_eval (force_underflow);
+	  retval = force_underflow;
+	  return retval;
+	}
+    }
+
+  /* Use FE_TONEAREST rounding mode for computing yy.y.
+     Avoid set/reset of rounding mode if already in FE_TONEAREST mode.  */
+  fe_val = get_rounding_mode ();
+  if (fe_val == FE_TONEAREST)
+    {
+      t = invln2_64 * xx.x;
+      if (ix < 0)
+	t -= half;
+      else
+	t += half;
+      k = (int) t;
+      j = (k & 0x3f) << 1;
+      m = k >> 6;
+      z = (xx.x - k * ln2_64hi) - k * ln2_64lo;
+
+      /* z is now in primary range.  */
+      t = z * z;
+      yy.y = z + (t * (half + z * t2) + (t * t) * (t3 + z * t4 + t * t5));
+      yy.y = TBL[j] + (TBL[j + 1] + TBL[j] * yy.y);
+    }
+  else
+    {
+      libc_fesetround (FE_TONEAREST);
+      t = invln2_64 * xx.x;
+      if (ix < 0)
+	t -= half;
+      else
+	t += half;
+      k = (int) t;
+      j = (k & 0x3f) << 1;
+      m = k >> 6;
+      z = (xx.x - k * ln2_64hi) - k * ln2_64lo;
+
+      /* z is now in primary range.  */
+      t = z * z;
+      yy.y = z + (t * (half + z * t2) + (t * t) * (t3 + z * t4 + t * t5));
+      yy.y = TBL[j] + (TBL[j + 1] + TBL[j] * yy.y);
+      libc_fesetround (fe_val);
+    }
+
+  if (m < -1021)
+    {
+      yy.y_part[HIGH_HALF] += (m + 54) << 20;
+      retval = twom54 * yy.y;
+      if (retval < DBL_MIN)
+	{
+	  double force_underflow = tiny * tiny;
+	  math_force_eval (force_underflow);
+	}
+      return retval;
+    }
+  yy.y_part[HIGH_HALF] += m << 20;
+  return yy.y;
 }
 #ifndef __ieee754_exp
 strong_alias (__ieee754_exp, __exp_finite)
 #endif
 
+#ifndef SECTION
+# define SECTION
+#endif
+
 /* Compute e^(x+xx).  The routine also receives bound of error of previous
    calculation.  If after computing exp the error exceeds the allowed bounds,
    the routine returns a non-positive number.  Otherwise it returns the