diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_atan2.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_atan2.c | 511 |
1 files changed, 388 insertions, 123 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_atan2.c b/sysdeps/ieee754/dbl-64/e_atan2.c index ae7d759a9f..11342d87d3 100644 --- a/sysdeps/ieee754/dbl-64/e_atan2.c +++ b/sysdeps/ieee754/dbl-64/e_atan2.c @@ -1,130 +1,395 @@ -/* @(#)e_atan2.c 5.1 93/09/24 */ /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * IBM Accurate Mathematical Library + * Copyright (c) International Business Machines Corp., 2001 * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: e_atan2.c,v 1.8 1995/05/10 20:44:51 jtc Exp $"; -#endif - -/* __ieee754_atan2(y,x) - * Method : - * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). - * 2. Reduce x to positive by (if x and y are unexceptional): - * ARG (x+iy) = arctan(y/x) ... if x > 0, - * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, - * - * Special cases: + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. * - * ATAN2((anything), NaN ) is NaN; - * ATAN2(NAN , (anything) ) is NaN; - * ATAN2(+-0, +(anything but NaN)) is +-0 ; - * ATAN2(+-0, -(anything but NaN)) is +-pi ; - * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; - * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; - * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; - * ATAN2(+-INF,+INF ) is +-pi/4 ; - * ATAN2(+-INF,-INF ) is +-3pi/4; - * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ +/************************************************************************/ +/* MODULE_NAME: atnat2.c */ +/* */ +/* FUNCTIONS: uatan2 */ +/* atan2Mp */ +/* signArctan2 */ +/* normalized */ +/* */ +/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ +/* mpatan.c mpatan2.c mpsqrt.c */ +/* uatan.tbl */ +/* */ +/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ +/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ +/* */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/* */ +/************************************************************************/ + +#include "dla.h" +#include "mpa.h" +#include "MathLib.h" +#include "uatan.tbl" +#include "atnat2.h" +/************************************************************************/ +/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ +/* it computes the correctly rounded (to nearest) value of atan2(y,x). */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/************************************************************************/ +static double atan2Mp(double ,double ,const int[]); +static double signArctan2(double ,double); +static double normalized(double ,double,double ,double); +void __mpatan2(mp_no *,mp_no *,mp_no *,int); + +double __ieee754_atan2(double y,double x) { + + int i,de,ux,dx,uy,dy,p; + static const int pr[MM]={6,8,10,20,32}; + double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8, + z,zz,z1,z2,cor,s1,ss1,s2,ss2; + number num; + mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2; + + static const int ep= 59768832, /* 57*16**5 */ + em=-59768832; /* -57*16**5 */ + + /* x=NaN or y=NaN */ + num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; + if ((ux&0x7ff00000) ==0x7ff00000) { + if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; } + num.d = y; uy = num.i[HIGH_HALF]; dy = num.i[LOW_HALF]; + if ((uy&0x7ff00000) ==0x7ff00000) { + if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; } + + /* y=+-0 */ + if (uy==0x00000000) { + if (dy==0x00000000) { + if ((ux&0x80000000)==0x00000000) return ZERO; + else return opi.d; } } + else if (uy==0x80000000) { + if (dy==0x00000000) { + if ((ux&0x80000000)==0x00000000) return MZERO; + else return mopi.d;} } + + /* x=+-0 */ + if (x==ZERO) { + if ((uy&0x80000000)==0x00000000) return hpi.d; + else return mhpi.d; } + + /* x=+-INF */ + if (ux==0x7ff00000) { + if (dx==0x00000000) { + if (uy==0x7ff00000) { + if (dy==0x00000000) return qpi.d; } + else if (uy==0xfff00000) { + if (dy==0x00000000) return mqpi.d; } + else { + if ((uy&0x80000000)==0x00000000) return ZERO; + else return MZERO; } + } + } + else if (ux==0xfff00000) { + if (dx==0x00000000) { + if (uy==0x7ff00000) { + if (dy==0x00000000) return tqpi.d; } + else if (uy==0xfff00000) { + if (dy==0x00000000) return mtqpi.d; } + else { + if ((uy&0x80000000)==0x00000000) return opi.d; + else return mopi.d; } + } + } + + /* y=+-INF */ + if (uy==0x7ff00000) { + if (dy==0x00000000) return hpi.d; } + else if (uy==0xfff00000) { + if (dy==0x00000000) return mhpi.d; } + + /* either x/y or y/x is very close to zero */ + ax = (x<ZERO) ? -x : x; ay = (y<ZERO) ? -y : y; + de = (uy & 0x7ff00000) - (ux & 0x7ff00000); + if (de>=ep) { return ((y>ZERO) ? hpi.d : mhpi.d); } + else if (de<=em) { + if (x>ZERO) { + if ((z=ay/ax)<TWOM1022) return normalized(ax,ay,y,z); + else return signArctan2(y,z); } + else { return ((y>ZERO) ? opi.d : mopi.d); } } + + /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ + if (ax<twom500.d || ay<twom500.d) { ax*=two500.d; ay*=two500.d; } + + /* x,y which are neither special nor extreme */ + if (ay<ax) { + u=ay/ax; + EMULV(ax,u,v,vv,t1,t2,t3,t4,t5) + du=((ay-v)-vv)/ax; } + else { + u=ax/ay; + EMULV(ay,u,v,vv,t1,t2,t3,t4,t5) + du=((ax-v)-vv)/ay; } -#include "math.h" -#include "math_private.h" - -#ifdef __STDC__ -static const double -#else -static double -#endif -tiny = 1.0e-300, -zero = 0.0, -pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ -pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ -pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ -pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ - -#ifdef __STDC__ - double __ieee754_atan2(double y, double x) -#else - double __ieee754_atan2(y,x) - double y,x; -#endif -{ - double z; - int32_t k,m,hx,hy,ix,iy; - u_int32_t lx,ly; - - EXTRACT_WORDS(hx,lx,x); - ix = hx&0x7fffffff; - EXTRACT_WORDS(hy,ly,y); - iy = hy&0x7fffffff; - if(((ix|((lx|-lx)>>31))>0x7ff00000)|| - ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ - return x+y; - if(((hx-0x3ff00000)|lx)==0) return __atan(y); /* x=1.0 */ - m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ - - /* when y = 0 */ - if((iy|ly)==0) { - switch(m) { - case 0: - case 1: return y; /* atan(+-0,+anything)=+-0 */ - case 2: return pi+tiny;/* atan(+0,-anything) = pi */ - case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ - } - } - /* when x = 0 */ - if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* when x is INF */ - if(ix==0x7ff00000) { - if(iy==0x7ff00000) { - switch(m) { - case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ - case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ - case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ - case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ - } - } else { - switch(m) { - case 0: return zero ; /* atan(+...,+INF) */ - case 1: return -zero ; /* atan(-...,+INF) */ - case 2: return pi+tiny ; /* atan(+...,-INF) */ - case 3: return -pi-tiny ; /* atan(-...,-INF) */ - } - } - } - /* when y is INF */ - if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* compute y/x */ - k = (iy-ix)>>20; - if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ - else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ - else z=__atan(fabs(y/x)); /* safe to do y/x */ - switch (m) { - case 0: return z ; /* atan(+,+) */ - case 1: { - u_int32_t zh; - GET_HIGH_WORD(zh,z); - SET_HIGH_WORD(z,zh ^ 0x80000000); - } - return z ; /* atan(-,+) */ - case 2: return pi-(z-pi_lo);/* atan(+,-) */ - default: /* case 3 */ - return (z-pi_lo)-pi;/* atan(-,-) */ - } + if (x>ZERO) { + + /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ + if (ay<ax) { + if (u<inv16.d) { + v=u*u; zz=du+u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + if ((z=u+(zz-u1.d*u)) == u+(zz+u1.d*u)) return signArctan2(y,z); + + MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(u,du,s2,ss2,s1,ss1,t1,t2) + if ((z=s1+(ss1-u5.d*s1)) == s1+(ss1+u5.d*s1)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + else { + i=(TWO52+TWO8*u)-TWO52; i-=16; + t3=u-cij[i][0].d; + EADD(t3,du,v,dv) + t1=cij[i][1].d; t2=cij[i][2].d; + zz=v*t2+(dv*t2+v*v*(cij[i][3].d+v*(cij[i][4].d+ + v*(cij[i][5].d+v* cij[i][6].d)))); + if (i<112) { + if (i<48) u9=u91.d; /* u < 1/4 */ + else u9=u92.d; } /* 1/4 <= u < 1/2 */ + else { + if (i<176) u9=u93.d; /* 1/2 <= u < 3/4 */ + else u9=u94.d; } /* 3/4 <= u <= 1 */ + if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1)) return signArctan2(y,z); + + t1=u-hij[i][0].d; + EADD(t1,du,v,vv) + s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ + v*(hij[i][14].d+v* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + if ((z=s2+(ss2-ub.d*s2)) == s2+(ss2+ub.d*s2)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + } + + /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ + else { + if (u<inv16.d) { + v=u*u; + zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + ESUB(hpi.d,u,t2,cor) + t3=((hpi1.d+cor)-du)-zz; + if ((z=t2+(t3-u2.d)) == t2+(t3+u2.d)) return signArctan2(y,z); + + MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(u,du,s2,ss2,s1,ss1,t1,t2) + SUB2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2) + if ((z=s2+(ss2-u6.d)) == s2+(ss2+u6.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + else { + i=(TWO52+TWO8*u)-TWO52; i-=16; + v=(u-cij[i][0].d)+du; + zz=hpi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+ + v*(cij[i][5].d+v* cij[i][6].d)))); + t1=hpi.d-cij[i][1].d; + if (i<112) ua=ua1.d; /* w < 1/2 */ + else ua=ua2.d; /* w >= 1/2 */ + if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); + + t1=u-hij[i][0].d; + EADD(t1,du,v,vv) + s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ + v*(hij[i][14].d+v* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + SUB2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2) + if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + } + } + else { + + /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ + if (ax<ay) { + if (u<inv16.d) { + v=u*u; + zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + EADD(hpi.d,u,t2,cor) + t3=((hpi1.d+cor)+du)+zz; + if ((z=t2+(t3-u3.d)) == t2+(t3+u3.d)) return signArctan2(y,z); + + MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(u,du,s2,ss2,s1,ss1,t1,t2) + ADD2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2) + if ((z=s2+(ss2-u7.d)) == s2+(ss2+u7.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + else { + i=(TWO52+TWO8*u)-TWO52; i-=16; + v=(u-cij[i][0].d)+du; + zz=hpi1.d+v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+ + v*(cij[i][5].d+v* cij[i][6].d)))); + t1=hpi.d+cij[i][1].d; + if (i<112) ua=ua1.d; /* w < 1/2 */ + else ua=ua2.d; /* w >= 1/2 */ + if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); + + t1=u-hij[i][0].d; + EADD(t1,du,v,vv) + s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ + v*(hij[i][14].d+v* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + ADD2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2) + if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + } + + /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ + else { + if (u<inv16.d) { + v=u*u; + zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); + ESUB(opi.d,u,t2,cor) + t3=((opi1.d+cor)-du)-zz; + if ((z=t2+(t3-u4.d)) == t2+(t3+u4.d)) return signArctan2(y,z); + + MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) + s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); + ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(u,du,s2,ss2,s1,ss1,t1,t2) + SUB2(opi.d,opi1.d,s1,ss1,s2,ss2,t1,t2) + if ((z=s2+(ss2-u8.d)) == s2+(ss2+u8.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + else { + i=(TWO52+TWO8*u)-TWO52; i-=16; + v=(u-cij[i][0].d)+du; + zz=opi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+ + v*(cij[i][5].d+v* cij[i][6].d)))); + t1=opi.d-cij[i][1].d; + if (i<112) ua=ua1.d; /* w < 1/2 */ + else ua=ua2.d; /* w >= 1/2 */ + if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); + + t1=u-hij[i][0].d; + EADD(t1,du,v,vv) + s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ + v*(hij[i][14].d+v* hij[i][15].d)))); + ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) + MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) + ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) + SUB2(opi.d,opi1.d,s2,ss2,s1,ss1,t1,t2) + if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); + return atan2Mp(x,y,pr); + } + } + } +} + /* Treat the Denormalized case */ +static double normalized(double ax,double ay,double y, double z) + { int p; + mp_no mpx,mpy,mpz,mperr,mpz2,mpt1; + p=6; + dbl_mp(ax,&mpx,p); dbl_mp(ay,&mpy,p); dvd(&mpy,&mpx,&mpz,p); + dbl_mp(ue.d,&mpt1,p); mul(&mpz,&mpt1,&mperr,p); + sub(&mpz,&mperr,&mpz2,p); mp_dbl(&mpz2,&z,p); + return signArctan2(y,z); +} + /* Fix the sign and return after stage 1 or stage 2 */ +static double signArctan2(double y,double z) +{ + return ((y<ZERO) ? -z : z); +} + /* Stage 3: Perform a multi-Precision computation */ +static double atan2Mp(double x,double y,const int pr[]) +{ + double z1,z2; + int i,p; + mp_no mpx,mpy,mpz,mpz1,mpz2,mperr,mpt1; + for (i=0; i<MM; i++) { + p = pr[i]; + dbl_mp(x,&mpx,p); dbl_mp(y,&mpy,p); + __mpatan2(&mpy,&mpx,&mpz,p); + dbl_mp(ud[i].d,&mpt1,p); mul(&mpz,&mpt1,&mperr,p); + add(&mpz,&mperr,&mpz1,p); sub(&mpz,&mperr,&mpz2,p); + mp_dbl(&mpz1,&z1,p); mp_dbl(&mpz2,&z2,p); + if (z1==z2) return z1; + } + return z1; /*if unpossible to do exact computing */ } |